欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 物理学家用的数学方法(第7版)(精)
      • 作者:(英)阿夫肯
      • 出版社:世界图书出版公司
      • ISBN:9787510070754
      • 出版日期:2014/03/01
      • 页数:1205
    • 售价:99.6
  • 内容大纲

  • 作者介绍

  • 目录

    Preface
    1 Mathematical  Preliminaries
      1.1  InfiniteSeries
      1.2  Series  ofFunctions
      1.3  Binomial  Theorem
      1.4  Mathematical  Induction
      1.5  Operations  on  Series  Expansions  of  Functions
      1.6  Some  Important  Series
      1.7  Vectors
      1.8  Complex  Numbers  and  Functions
      1.9  Derivatives  andExtrema
      1.10  Evaluation  oflntegrals
      1.1  I  Dirac  Delta  Function
      AdditionaIReadings
    2 Determinants  and  Matrices
      2.1  Determinants
      2.2  Matrices
      AdditionaI  Readings
    3 Vector  Analysis
      3.1  Review  ofBasic  Properties
      3.2  Vectors  in  3-D  Space  
      3.3  Coordinate  Transformations
      3.4  Rotations  in  IR3
      3.5  Differential  Vector  Operators
      3.6  Differential  Vector  Operators:  Further  Properties
      3.7  Vectorlntegration
      3.8  Integral  Theorems
      3.9  PotentiaITheory
      3.10  Curvilinear  Coordinates
      AdditionaIReadings
    4 Tensors  and  Differential  Forms
      4.1  TensorAnalysis
      4.2  Pseudotensors,  Dual  Tensors
      4.3  Tensors  in  General  Coordinates
      4.4  Jacobians
      4.5  DifferentialForms
      4.6  DifferentiatingForms
      4.7  IntegratingForms
      AdditionalReadings
    5 Vector Spaces
      5.1  Vectors  in  Function  Spaces
      5.2  Gram-Schmidt  Orthogonalization
      5.3  Operators
      5.4  SelfAdjointOperators
      5.5  Unitaty  Operators
      5.6  Transformations  of  Operators
      5.7  Invariants
      5.8  Summary-Vector  Space  Notation
      AdditionaIReadings
    6 Eigenvalue  Problems

      6.1  EigenvalueEquations
      6.2  Matrix  Eigenvalue  Problems
      6.3  Hermitian  Eigenvalue  Problems
      6.4  Hermitian  Matrix  Diagonalization
      6.5  NormaIMatrices
      AdditionalReadings
    7 Ordinary  DifTerential  Equations
      7.1  Introduction
      7.2  First-OrderEquations
      7.3  ODEs  with  Constant  Coefficients
      7.4  Second-Order  Linear  ODEs
      7.5  Series  Solutions-Frobenius  '  Method
      7.6  OtherSolutions
      7.7  Inhomogeneous Linear ODEs
      7.8  Nonlinear Differential Equations
      Additional Readings
    8 Sturm-Liouville Theory
      8.1  Introduction
      8.2  Hermitian Operators
      8.3  ODE Eigenvalue Problems
      8.4  Variation Method
      8.5  Summary, Eigenvalue Problems
      Additional Readings
    9 Partial Differential Equations
      9.1  Introduction
      9.2  First-Order Equations
      9.3  Second-Order Equations
      9.4  Separation of Variables
      9.5  Laplace and Poisson Equations
      9.6  Wave Equation
      9.7  Heat-Flow, or Diffusion PDE
      9.8  Summary
      Additional Readings
    10 Green's Functions
      10.1  One-Dimensional Problems
      10.2  Problems in Two and Three Dimensions
      Additional Readings
    11 Complex Variable Theory
      11.1  Complex Variables and Functions
      11.2  Cauchy-Riemann Conditions
      11.3  Cauchy' s Integral Theorem
      11.4  Cauchy' s Integral Formula
      11.5  Laurent Expansion
      11.6  Singularities
      11.7  Calculus of Residues
      11.8  Evaluation of Definite Integrals
      11.9  Evaluation of Sums
      11.10 Miscellaneous Topics
      Additional Readings  
    12 Further Topics in Analysis

      12.1  Orthogonal Polynomials
      12.2  Bernoulli Numbers
      12.3  Euler-Maclaurin Integration Formula
      12.4  Dirichlet Series
      12.5  Infinite Products
      12.6  Asymptotic Series
      12.7  Method of Steepest Descents
      12.8  Dispersion Relations
      Additional Readings
    13 Gamma Function
      13.1  Definitions, Properties
      13.2  Digamma and Polygamma Functions
      13.3  The Beta Function
      13.4  Stirling's Series
      13.5  Riemann Zeta Function
      13.6  Other Related Functions
      Additional Readings
    14 Bessel Functions
      14.1  Bessel Functions of the First Kind, ,Iv (x)
      14.2  Orthogonality
      14.3  Neumann Functions, Bessel Functions of the Second Kind
      14.4  Hankel Functions
      14.5  Modified Bessel Functions, Iv (x) and Kv (x)
      14.6  Asymptotic Expansions
      14.7  Spherical Bessel Functions
      Additional Readings
    15 Legendre Functions
      15.1  Legendre Polynomials
      15.2  Orthogonality
      15.3  Physical Interpretation of Generating Function
      15.4  Associated Legendre Equation
      15.5  Spherical Harmonics
      15.6  Legendre Functions of the Second Kind
      Additional Readings
    16 Angular Momentum
      16.1  Angular Momentum Operators
      16.2  Angular Momentum Coupling
      16.3  Spherical Tensors
      16.4  Vector Spherical Harmonics
      Additional Readings  
    17 Group Theory
      17.1  Introduction to Group Theory
      17.2  Representation of Groups
      17.3  Symmetry and Physics
      17.4  Discrete Groups
      17.5  Direct Products
      17.6  Symmetric Group
      17.7  Continuous Groups
      17.8  Lorentz Group
      17.9  Lorentz Covariance of Maxwell's Equations

      17.10 Space Groups
      Additional Readings
    18 More Special Functions
      18.1  Hermite Functions
      18.2  Applications of Hermite Functions
      18.3  Laguerre Functions
      18.4  Chebyshev Polynomials
      18.5  Hypergeometric Functions
      18.6  Confluent Hypergeometric Functions
      18.7  Dilogarithm
      18.8  Elliptic Integrals
      Additional Readings
    19 Fourier Series
      19.1  General Properties
      19.2  Applications of Fourier Series
      19.3  Gibbs Phenomenon  
      Additional Readings
    20 Integral Transforms
      20.1  Introduction
      20.2  Fourier Transform
      20.3  Properties of Fourier Transforms
      20.4  Fourier Convolution Theorem
      20.5  Signal-Processing Applications
      20.6  Discrete Fourier Transform
      20.7  Laplace Transforms
      20.8  Properties of Laplace Transforms
      20.9  Laplace Convolution Theorem
      20.10 Inverse Laplace Transform
      Additional Readings
    21 Integral Equations
      21.1  Introduction
      21.2  Some Special Methods
      21.3  Neumann Series
      21.4  Hilbert-Schmidt Theory
      Additional Readings
      17.4  Discrete Groups
      17.5  Direct Products
      17.6  Symmetric Group
      17.7  Continuous Groups
      17.8  Lorentz Group
      17.9  Lorentz Covariance of Maxwell's Equations
      17.10 Space Groups
      Additional Readings
    18 More Special Functions
      18.1  Hermite Functions
      18.2  Applications of Hermite Functions
      18.3  Laguerre Functions
      18.4  Chebyshev Polynomials
      18.5  Hypergeometric Functions
      18.6  Confluent Hypergeometric Functions

      18.7  Dilogarithm
      18.8  Elliptic Integrals
      Additional Readings
    19 Fourier Series
      19.1  General Properties
      19.2  Applications of Fourier Series
      19.3  Gibbs Phenomenon  
      Additional Readings
    20 Integral Transforms
      20.1  Introduction
      20.2  Fourier Transform
      20.3  Properties of Fourier Transforms
      20.4  Fourier Convolution Theorem
      20.5  Signal-Processing Applications
      20.6  Discrete Fourier Transform
      20.7  Laplace Transforms
      20.8  Properties of Laplace Transforms
      20.9  Laplace Convolution Theorem
      20.10 Inverse Laplace Transform
      Additional Readings
    21 Integral Equations
      21.1  Introduction
      21.2  Some Special Methods
      21.3  Neumann Series
      21.4  Hilbert-Schmidt Theory
      Additional Readings
    22 Calculus of Variations
      22.1  Euler Equation
      22.2  More General Variations
      22.3  Constrained Minima/Maxima
      22.4  Variation with Constraints  
      Additional Readings
    23 Probability and Statistics
      23.1  Probability: Definitions, Simple Properties
      23.2  Random Variables
      23.3  Binomial Distribution
      23.4  Poisson Distribution
      23.5  Gauss' Normal Distribution
      23.6  Transformations of Random Variables  
      23.7  Statistics
      Additional Readings
    Index

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>