欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 非线性动力学和统计理论在地球物理流动中的应用(英文版)
      • 作者:(美)马伊达
      • 出版社:世界图书出版公司
      • ISBN:9787510086281
      • 出版日期:2015/01/01
      • 页数:551
    • 售价:51.6
  • 内容大纲

  • 作者介绍

  • 目录

    Preface
    1 Barotropic geophysical flows and two-dimensional fluid flows: elementary introduction
      1.1 Introduction
      1.2 Some special exact solutions
      1.3 Conserved quantities
      1.4 Barotropic geophysical flows in a channel domain - an important physical model
      1.5 Variational derivatives and an optimization principle for elementary geophysical solutions
      1.6 More equations for geophysical flows
      References
    2 The response to large-scale forcing
      2.1 Introduction
      2.2 Non-linear stability with Kolmogorov forcing
      2.3 Stability of flows with generalized Kolmogorov forcing
      References
    3 The selective decay principle for basic geophysical flows
      3.1 Introduction
      3.2 Selective decay states and their invariance
      3.3 Mathematical formulation of the selective decay principle
      3.4 Energy-enstrophy decay
      3.5 Bounds on the Dirichlet quotient, A(t)
      3.6 Rigorous theory for selective decay
      3.7 Numerical experiments demonstrating facets of selective decay
      References
      A.1 Stronger controls on A(t)
      A.2 The proof of the mathematical form of the selective decay principle in the presence of the beta-plane effect
    4 Non-linear stability of steady geophysical flows
      4.1 Introduction
      4.2 Stability of simple steady states
      4.3 Stability for more general steady states
      4.4 Non-linear stability of zonal flows on the beta-plane
      4.5 Variational characterization of the steady states
      References
    5 Topographic mean flow interaction, non-linear instability, and chaotic dynamics
      5.1 Introduction
      5.2 Systems with layered topography
      5.3 Integrable behavior
      5.4 A limit regime with chaotic solutions
      5.5 Numerical experiments
      References
      Appendix 1
      Appendix 2
    6 Introduction to information theory and empirical statistical theory
      6.1 Introduction
      6.2 Information theory and Shannon's entropy
      6.3 Most probable states with prior distribution
      6.4 Entropy for continuous measures on the line
      6.5 Maximum entropy principle for continuous fields
      6.6 An application of the maximum entropy principle to geophysical flows with topography
      6.7 Application of the maximum entropy principle to geophysical flows with topography and mean flow
      References

    7 Equilibrium statistical mechanics for systems of ordinary differential equations
      7.1 Introduction
      7.2 Introduction to statistical mechanics for ODEs
      7.3 Statistical mechanics for the truncated Burgers-Hopf equations
      7.4 The Lorenz 96 model
      References
    8 Statistical mechanics for the truncated quasi-geostrophic equations
      8.1 Introduction
      8.2 The finite-dimensional truncated quasi-geostrophic equations
      8.3 The statistical predictions for the truncated systems
      8.4 Numerical evidence supporting the statistical prediction
      8.5 The pseudo-energy and equilibrium statistical mechanics for
      fluctuations about the mean
      8.6 The continuum limit
      8.7 The role of statistically relevant and irrelevant
      conserved quantities
      References
      Appendix 1
    9  Empirical statistical theories for most probable states
      9.1 Introduction
      9.2 Empirical statistical theories with a few constraints
      9.3 The mean field statistical theory for point vortices
      9.4 Empirical statistical theories with infinitely many constraints
      9.5 Non-linear stability for the most probable mean fields
      References
    10 Assessing the potential applicability of equilibrium statistical
      theories for geophysical flows: an overview
      10.1 Introduction
      10.2 Basic issues regarding equilibrium statistical theories
      for geophysical flows
      10.3 The central role of equilibrium statistical theories with a
      judicious prior distribution and a few external constraints
      10.4 The role of forcing and dissipation
      10.5 Is there a complete statistical mechanics theory for ESTMC
      and ESTP?
      References
    11 Predictions and comparison of equilibrium statistical theories
      11.1 Introduction
      11.2 Predictions of the statistical theory with a judicious prior and a
      few external constraints for beta-plane channel flow
      11.3 Statistical sharpness of statistical theories with few constraints
      11.4 The limit of many-constraint theory (ESTMC) with small
      amplitude potential vorticity
      References
    12 Equilibrium statistical theories and dynamical modeling of
      flows with forcing and dissipation
      12.1 Introduction
      12.2 Meta-stability of equilibrium statistical structures with
      dissipation and small-scale forcing
      12.3 Crude closure for two-dimensional flows

      12.4 Remarks on the mathematical justifications of crude closure
      References
    13 Predicting the jets and spots on Jupiter by equilibrium
      statistical mechanics
      13.1 Introduction
      13.2 The quasi-geostrophic model for interpreting observations
      and predictions for the weather layer of Jupiter
      13.3 The ESTP with physically motivated prior distribution
      13.4 Equilibrium statistical predictions for the jets and spots
      on Jupiter
      References
    14 The statistical relevance of additional conserved quantities for
      truncated geophysical flows
      14.1 Introduction
      14.2 A numerical laboratory for the role of higher-order invariants
      14.3 Comparison with equilibrium statistical predictions
      with a judicious prior
      14.4 Statistically relevant conserved quantities for the
      truncated Burgers-Hopf equation
      References
      A.1 Spectral truncations of quasi-geostrophic flow with additional
      conserved quantities
    15 A mathematical framework for quantifying predictability
      utilizing relative entropy
      15.1 Ensemble prediction and relative entropy as a measure of
      predictability
      15.2 Quantifying predictability for a Gaussian
      prior distribution
      15.3 Non-Gaussian ensemble predictions in the Lorenz 96 model
      15.4 Information content beyond the climatology in ensemble
      predictions for the truncated Burgers-Hopf model
      15.5 Further developments in ensemble predictions and
      information theory
      References
    16 Barotropie quasi-geostrophic equations on the sphere
      16.1 Introduction
      16.2 Exact solutions, conserved quantities, and non-linear stability
      16.3 The response to large-scale forcing
      16.4 Selective decay on the sphere
      16.5 Energy enstrophy statistical theory on the unit sphere
      16.6 Statistical theories with a few constraints and statistical theories
      with many constraints on the unit sphere
      References
      Appendix 1
      Appendix 2
    Index

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>