欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 原子和量子物理学(第7版)(英文版)
      • 作者:(德)哈肯
      • 出版社:世界图书出版公司
      • ISBN:9787510084522
      • 出版日期:2015/01/01
      • 页数:517
    • 售价:55.6
  • 内容大纲

        由哈肯(H.Haken)等著的《原子和量子物理学(第7版)(英文版)》是一部经典教科书,在全面阐述原子和量子物理的实验方法和基本理论的同时,也向读者介绍了该领域的最新动态,如Bell不等式、薛定鄂猫和脱散实验,以及量子计算机、量子信息和原子激光等。本书不但有173例习题,而且还有这些习题的解,这也是本书的另一个突出特点。
        目次:原子的质量和大小;同位素;原子核;光子;电子;物质波的基本特性;氢原子的波尔模型;量子理论的数学基础;氢原子的量子力学;强碱原子光谱中的轨道简并提升;轨道磁性和自旋磁性;磁场中原子的实验及其半经典描述;磁场中原子的量子力学分析方法;核自旋和超精细结构;激光;现代光谱方法;量子物理学进展;化学键的量子理论基础。
        读者对象:物理专业师生及科研人员。
  • 作者介绍

  • 目录

    List of the Most Important Symbols Used
    1.Introduction
      1.1 Classical Physics and Quantum Mechanics
      1.2 Short Historical Review
    2.The Mass and Size of the Atom
      2.1 What is an Atom?
      2.2 Determination of the Mass
      2.3 Methods for Determining Avogadro's Number
      2.3.1 Electrolysis
      2.3.2 The Gas Constant and Boltzmann's Constant
      2.3.3 X—Ray Diffraction in Crystals
      2.3.4 Determination Using Radioactive Decay
      2.4 Determination of the Size of the Atom
      2.4.1 Application of the Kinetic Theory of Gases
      2.4.2 The Interaction Cross Section
      2.4.3 Experimental Determination of Interaction Cross Sections
      2.4.4 Determining the Atomic Size from the Covolume
      2.4.5 Atomic Sizes from X—Ray Diffraction Measurements on Crystals
      2.4.6 Can Individual Atoms Be Seen?
      Problems
    3.Isotopes
      3.1 The Periodic System of the Elements
      3.2 Mass Spectroscopy
      3.2.1 Parabola Method
      3.2.2 Improved Mass Spectrometers
      3.2.3 Results of Mass Spectrometry
      3.2.4 Modem Applications of the Mass Spectrometer
      3.2.5 Isotope Separation
      Problems
    4.The Nucleus of the Atom
      4.1 Passage of Electrons Through Matter
      4.2 Passage of Alpha Particles Through Matter (Rutherford Scattering)
      4.2.1 Some Properties of Alpha Particles
      4.2.2 Scattering of Alpha Particles by a Foil
      4.2.3 Derivation of the Rutherford Scattering Formula
      4.2.4 Experimental Results
      4.2.5 What is Meant by Nuclear Radius?
      Problems
    5.The Photon
      5.1 Wave Character of Light
      5.2 Thermal Radiation
      5.2.1 Spectral Distribution of Black Body Radiation
      5.2.2 Planck's Radiation Formula
      5.2.3 Einstein's Derivation of Planck's Formula
      5.3 The Photoelectric Effect
      5.4 The Compton Effect
      5.4.1 Experiments
      5.4.2 Derivation of the Compton Shift
      Problems
    6.The Electron

      6.1 Production of Free Electrons
      6.2 Size of the Electron
      6.3 The Charge of the Electron
      6.4 The Specific Charge elm of the Electron
      6.5 Wave Character of Electrons and Other Particles
      6.6 Interferometry with Atoms
      Problems
    7.Some Basic Properties of Matter Waves
      7.1 Wave Packets
      7.2 Probabilistic Interpretation
      7.3 The Heisenberg Uncertainty Relation
      7.4 The Energy—Time Uncertainty Relation
      7.5 Some Consequences of the Uncertainty Relations for Bound States
      Problems
    8.Bohr's Model of the Hydrogen Atom
      8.1 Basic Principles of Spectroscopy
      8.2 The Optical Spectrum of the Hydrogen Atom
      8.3 Bohr's Postulates
      8.4 Some Quantitative Conclusions
      8.5 Motion of the Nucleus
      8.6 Spectra of Hydrogen—like Atoms
      8.7 Muonic Atoms
      8.8 Excitation of Quantum Jumps by Collisions
      8.9 Sommerfeld's Extension of the Bohr Model
      and the Experimental Justification of a Second Quantum Number
      8.10 Lifting of Orbital Degeneracy by the Relativistic Mass Change
      8.11 Limits of the Bohr—Sommerfeld Theory.The Correspondence Principle
      8.12 Rydberg Atoms
      8.13 Exotic Atoms: Positronium, Muonium, and Antihydrogen
      Problems
    9.The Mathematical Framework of Quantum Theory
      9.1 The Particle in a Box
      9.2 The Schrodinger Equation
      9.3 The Conceptual Basis of Quantum Theory
      9.3.1 Observations, Values of Measurements and Operators
      9.3.2 Momentum Measurement and Momentum Probability
      9.3.3 Average Values and Expectation Values
      9.3.4 Operators and Expectation Values
      9.3.5 Equations for Determining the Wavefunction
      9.3.6 Simultaneous Observability and Commutation Relations
      9.4 The Quantum Mechanical Oscillator
      Problems
    10.Quantum Mechanics of the Hydrogen Atom
      10.1 Motion in a Central Field
      10.2 Angular Momentum Eigenfunctions
      10.3 The Radial Wavefunctions in a Central Field*
      10.4 The Radial Wavefunctions of Hydrogen
      Problems
    11.Lifting of the Orbital Degeneracy in the Spectra of Alkali Atoms
      11.1 Shell Structure

      11.2 Screening
      11.3 The Term Diagram
      11.4 Inner Shells
      Problems
    12.Orbital and Spin Magnetism.Fine Structure
      12.1 Introduction and Overview
      12.2 Magnetic Moment of the Orbital Motion
      12.3 Precession and Orientation in a Magnetic Field
      12.4 Spin and Magnetic Moment of the Electron
      12.5 Determination of the Gyromagnetic Ratio
      by the Einstein—de Haas Method
      12.6 Detection of Directional Quantisation by Stern and Gerlach
      12.7 Fine Structure and Spin—Orbit Coupling: Overview
      12.8 Calculation of Spin—Orbit Splitting in the Bohr Model
      12.9 Level Scheme of the Alkali Atoms
      12.10 Fine Structure in the Hydrogen Atom
      12.11 The Lamb Shift
      Problems
    13.Atoms in a Magnetic Field:
      Experiments and Their Semiclassical Description
      13.1 Directional Quantisation in a Magnetic Field
      13.2 Electron Spin Resonance
      13.3 The Zeeman Effect
      13.3.1 Experiments
      13.3.2 Explanation of the Zeeman Effect from the Standpoint of Classical Electron Theory
      13.3.3 Description of the Ordinary Zeeman Effect by the Vector Model
      13.3.4 The Anomalous Zeeman Effect
      13.3.5 Magnetic Moments with Spin—Orbit Coupling
      13.4 The Paschen—Back Effect
      13.5 Double Resonance and Optical Pumping
      Problems
    14.Atoms in a Magnetic Field: Quantum Mechanical Treatment
      14.1 Quantum Theory of the Ordinary Zeeman Effect
      14.2 Quantum Theoretical Treatment of the Electron and Proton Spins
      14.2.1 Spin as Angular Momentum
      14.2.2 Spin Operators, Spin Matrices and Spin Wavefunctions
      14.2.3 The Schrodinger Equation of a Spin in a Magnetic Field
      14.2.4 Description of Spin Precession by Expectation Values
      14.3 Quantum Mechanical Treatment of the Anomalous Zeeman Effect with Spin—Orbit Coupling*
      14.4 Quantum Theory of a Spin in Mutually Perpendicular Magnetic Fields, One Constant and One Time Dependent
      14.5 The Bloch Equations
      14.6 The Relativistic Theory of the Electron.The Dirac Equation
      14.7 The Hydrogen Atom in Strong Magnetic Fields*
      14.7.1 Rydberg Atoms in Strong Fields
      14.7.2 What is Chaos? A Reminder of Classical Mechanics
      14.7.3 Quantum Chaos
      14.7.4 The Hydrogen Atom in Strong Magnetic Fields and in Low Quantum States
      Problems
    15.Atoms in an Electric Field
      15.1 Observations of the Stark Effect

      15.2 Quantum Theory of the Linear and Quadratic Stark Effects
      15.2.1 The Hamiltonian
      15.2.2 The Quadratic Stark Effect.
      Perturbation Theory Without Degeneracy
      15.2.3 The Linear Stark Effect.
      Perturbation Theory in the Presence of Degeneracy
      15.3 The Interaction of a Two—Level Atom
      with a Coherent Radiation Field
      15.4 Spin and Photon Echoes
      15.5 A Glance at Quantum Electrodynamics
      15.5.1 Field Quantization
      15.5.2 Mass Renormalization and Lamb Shift
      15.6 Atoms in Strong Electric Fields
      Problems
    16.General Laws of Optieal Transitions
      16.1 Symmetriesand Selection Rules
      16.1.1 Optical Matrix Elements
      16.1.2 Examples of the Symmetry Behaviour of Wavefunctions
      16.1.3 Selection Rules
      16.1.4 Selection Rules and Multipole Radiation
      16.2 Linewidths and Lineshapes
    17.Many—Electron Atoms
      17.1 The Spectrum of the Helium Atom
      17.2 Electron Repulsion and the Pauli Principle
      17.3 Angular Momentum Coupling
      17.3.1 Coupling Mechanism
      17.3.2 LS Coupling (RusseU—Saunders Coupling)
      17.3.3 jj Coupling
      17.4 Magnetic Moments of Many—ElectronAtoms
      17.5 Multiple Excitations
      Problems
    18.X—Ray Spectra, Internal Shells
      18.1 Introductory Remarks
      18.2 X—Radiation from Outer Shells
      18.3 X—Ray Bremsstrahlung Spectra
      18.4 Emission Line Spectra: Characteristic Radiation
      18.5 Fine Structure of the X—Ray Spectra
      18.6 Absorption Spectra
      18.7 The Auger Effect
      18.8 Photoelectron Spectroscopy (XPS), ESCA
      Problems
    19.Structure of the Periodic System.Ground States of the Elements
      19.1 Periodic System and Shell Structure
      19.2 From the Electron Configuration to the
      Atomic Term Scheme.Atomic Ground States
      19.3 Excited States of Atoms and Possible Electronic Configurations.
      Complete Term Schemes
      19.4 The Many—Electron Problem.Hartree—Fock Method*
      19.4.1 The Two—Electron Problem
      19.4.2 Many Electrons Without Mutual Interactions

      19.4.3 Coulomb Interaction of Electrons.Hartree and Hartree—Fock
      Methods
      Problems
    20.Nuclear Spin, Hyperfine Structure
      20.1 Influence of the Atomic Nucleus on Atomic Spectra
      20.2 Spins and Magnetic Moments of Atomic Nuclei
      20.3 The Hyperfine Interaction
      20.4 Hyperfine Structure in the Ground State of the Hydrogen Atom, the Sodium Atom, and the Hydrogen—like Ion 83Bi82+
      20.5 Hyperfine Structure in an External Magnetic Field, Electron Spin Resonance
      20.6 Direct Measurements of Nuclear Spins and Magnetic Moments, Nuclear Magnetic Resonance
      20.7 Applications of Nuclear Magnetic Resonance
      20.8 The Nuclear Electric Quadrupole Moment
      Problems
    21.The Laser
      21.1 Some Basic Concepts for the Laser
      21.2 Rate Equations and Lasing Conditions
      21.3 Amplitude and Phase of Laser Light
      Problems
    22.Modern Methods of Optical Spectroscopy
      22.1 Classical Methods
      22.2 Quantum Beats
      22.3 Doppler—free Saturation Spectroscopy
      22.4 Doppler—free Two—Photon Absorption
      22.5 Level—Crossing Spectroscopy and the Hanle Effect
      22.6 Laser Cooling of Atoms
      22.7 Nondestructive Single—Photon Detection—
      An Example of Atomic Physics in a Resonant Cavity
      Problems
    23.Progress in Quantum Physics:
      A Deeper Understanding and New Applications
      23.1 Introduction
      23.2 The Superposition Principle, Interference, Probabilily and Probability Amplitudes
      23.3 Schrodinger's Cat
      23.4 Decoherence
      23.5 Entanglement
      23.6 The Einstein—Podolsky—Rosen (EPR) Paradox
      23.7 Bell's Inequalities and the Hidden—Variable Hypothesis
      23.8 Experiments to Test Bell's Inequalities
      23.9 Quantum Computers
      23.9.1 Historical Remarks
      23.9.2 Review of Digital Computers
      23.9.3 Basic Concepts of the Quantum Computer
      23.9.4 Decoherence and Error Correction
      23.9.5 A Comparison Between the Quantum Computer
      and the Digital Computer
      23.10 Quantum Information Theory
      23.11 The Bose—Einstein Condensation
      23.11.1 Review of Statistical Mechanics
      23.11.2 The Experimental Discovery
      23.11.3 The Quantum Theory of the Bose—Einstein Condensation

      23.12 The Atom Laser
      Problems
    24.Fundamentals of the Quantum Theory of Chemical Bonding
      24.1 Introductory Remarks
      24.2 The Hydrogen—Molecule Ion H+2
      24.3 The Tunnel Effect
      24.4 The Hydrogen Molecule H2
      24.5 Covalent—Ionic Resonance
      24.6 The Hund—Mulliken—Bloch Theory of Bonding in Hydrogen
      24.7 Hybridisation
      24.8 The n Electrons of Benzene, C6H6
      Problems
    Appendix
      A. The Dirac Delta Function and the Normalisation of the Wavefunction
      of a Free Particle in Unbounded Space
      B. Some Properties of the Hamiltonian Operator, Its Eigenfunctions
      and its Eigenvalues
      C. Derivation of Heisenberg's Uncertainty Relation
    Solutions to the Problems
    Bibliography of Supplementary and Specialised Literature
    Subject Index
    Fundamental Constants of Atomic Physics (Inside Front Cover)
    Energy Conversion Table (Inside Back Cover)

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>