濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌熼梻瀵割槮缁惧墽绮换娑㈠箣閻戝棛鍔┑鐐村灦閻燂箓宕曢悢鍏肩厪濠电偛鐏濋崝姘舵煟鎼搭喖寮慨濠冩そ瀹曟鎳栭埞鍨沪闂備礁鎼幊蹇曞垝瀹€鍕仼闁绘垼妫勯拑鐔兼煏婢舵稓鐣遍柍褜鍓涢弫濠氬蓟閵娿儮鏀介柛鈩冧緱閳ь剚顨婇弻锛勨偓锝庡亞閵嗘帞绱掓潏銊ユ诞闁糕斁鍋撳銈嗗笒鐎氼剛澹曢崗鍏煎弿婵☆垰鐏濇禍褰掓煕閻愬灚鏆柡宀嬬秮閹晠鎮滃Ο绯曞亾閸愵喗鍋i柍褜鍓熼弫鍐焵椤掆偓瀹撳嫰姊洪崨濠勨槈閺嬵亜霉濠婂嫮鐭掗柡灞诲姂瀵潙螖閳ь剚绂嶆ィ鍐╁€垫繛鍫濈仢閺嬫稑顭胯闁帮綁鐛幋锕€顫呴柣姗嗗亝閺傗偓闂佽鍑界紞鍡樼鐠烘í缂氬┑鐘叉处閳锋垹绱撴担鍏夋(妞ゅ繐瀚烽崵鏇㈡偣閾忚纾柟鐑橆殔缁犳盯鏌eΔ鈧悧鍐箯濞差亝鈷掗柛灞炬皑婢ф稓绱掔€n偄娴鐐寸墵楠炲洭顢橀悩娈垮晭闁诲海鎳撴竟濠囧窗閺嶎厾宓侀柡宥庡幗閻撶喖鏌ㄥ┑鍡樺櫣婵¤尙绮妵鍕敃閿濆洨鐣奸梺鍦嚀鐎氫即骞栬ぐ鎺撳仭闁哄娉曢鍥⒒閸屾艾鈧娆㈠璺虹劦妞ゆ帒鍊告禒婊堟煠濞茶鐏¢柡鍛板煐鐎佃偐鈧稒岣块崢鐐繆閵堝繒鐣虫繛澶嬫礈閼洪亶宕稿Δ浣哄帾闂佹悶鍎崝灞炬叏瀹ュ棭娈介柣鎰綑濞搭喗顨ラ悙宸剶闁诡喗绮撳畷鍗烆潨閸℃﹫绱欓梻鍌氬€搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇氱秴闁搞儺鍓﹂弫宥夋煟閹邦厽缍戦柍褜鍓濋崺鏍崲濠靛顥堟繛鎴炶壘椤e搫顪冮妶鍐ㄥ姕鐎光偓閹间礁钃熸繛鎴旀噰閳ь剨绠撻獮瀣攽閸モ晙绨┑鐘殿暯閸撴繆銇愰崘顔藉亱闁规崘顕ч拑鐔兼煥閻斿搫孝缂佲偓閸愵喗鐓冮柛婵嗗閳ь剚鎮傚鍐参旈崨顔规嫼婵炴潙鍚嬮悷褏绮旈鈧湁婵犲﹤楠告晶鐗堜繆閸欏濮嶆鐐村笒铻栭柍褜鍓氶崕顐︽煟閻斿摜鐭婇梺甯到椤曪綁骞庨挊澶屽幐闂佸憡鍔︽禍鐐烘晬濠婂牊鐓涘璺猴功婢ф垿鏌涢弬璺ㄐч挊鐔兼煕椤愮姴鍔滈柣鎾寸☉闇夐柨婵嗙墱濞兼劗鈧娲栭惌鍌炲蓟閳╁啯濯撮悷娆忓绾炬娊姊烘潪鎵妽闁圭懓娲顐﹀箻缂佹ɑ娅㈤梺璺ㄥ櫐閹凤拷 [闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ帊绀侀崜顓烆渻閵堝棗濮х紒鐘冲灴閻涱噣濮€閵堝棛鍘撻柡澶屽仦婢瑰棝宕濆鍡愪簻闁哄倸鐏濋顐ょ磼鏉堛劍宕岀€规洘甯掗~婵嬵敄閽樺澹曢梺鍛婄缚閸庢娊鎯屽▎鎾寸厱闁哄洢鍔岄悘鐘电磼閻欌偓閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟� | 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵姘ㄧ槐鎾诲磼濞嗘帒鍘$紓渚囧櫘閸ㄨ泛鐣峰┑鍠棃宕橀妸銉т喊闂備礁鎼崯顐︽偋婵犲洤纾瑰┑鐘崇閻撱垺淇婇娆掝劅婵″弶鎮傞弻锝嗘償椤旂厧绫嶅┑顔硷龚濞咃絿鍒掑▎鎾崇閹兼番鍨虹€氭娊姊绘担铏广€婇柡鍛洴瀹曨垶寮堕幋顓炴闂佸綊妫跨粈渚€宕橀埀顒€顪冮妶鍡樺暗闁哥姵鎹囧畷銏ゎ敂閸涱垳鐦堥梺姹囧灲濞佳勭濠婂牊鐓熼煫鍥ㄦ⒒缁犵偟鈧娲樼换鍌烇綖濠靛鍤嬮柣銏ゆ涧楠炴劙姊绘担鍛靛綊寮甸鍕┾偓鍐川椤旂虎娲搁梺璺ㄥ櫐閹凤拷]

    • 非线性振动动力学系统和矢量场的分叉(英文版)
      • 作者:(美)J.古肯海默//P.霍姆斯
      • 出版社:世界图书出版公司
      • ISBN:9787519226176
      • 出版日期:2017/08/01
      • 页数:459
    • 售价:31.2
  • 内容大纲

        J.古肯海默、P.霍姆斯著的《非线性振动动力学系统和矢量场的分叉(英文版)》是论述动力学系统、分叉理论与非线性振动研究之间接口部分的理论专著,主要讨论以欧氏空间微分流形为相空间,以及常微分方程组和映象集为数学模型的问题。本书初版于1983年,本版是2002第7次修订版,该书出版三十余年来倍受读者欢迎,是混沌动力学的经典教材。
  • 作者介绍

  • 目录

    CHAPTER 1
      Introduction: Differential Equations and Dynamical Systems
      1.1 Existence and Uniqueness of Solutions
      1.1 The Linear System x = Ax
      1.2 Flows and Invariant Subspaces
      1.3 The Nonlinear System x = f (x)
      1.4 Linear and Nonlinear Maps
      1.5 Closed Orbits, Poincare Maps.and Forced Oscillations
      1.6 Asymptotic Behavior
      1.7 Equivalence Relations and Structural Stability
      1.8 Two-Dimensional Flows
      1.9 Peixoto's Theorem for Two-Dimensional Flows
    CHAPTER 2
      An Introduction to Chaos: Four Examples
      2.1 Van der Pol's Equation
      2.2 Duffing's Equaiion
      2.3 The Lorenz Equations
      2.4 The Dynamics of a Bouncing Ball
      2.5 Conclusions: The Moral of the Tales
    CHAPTER 3
      Local Bifurcations
      3.1 BiFurcation Problems
      3.2 Center Manifolds
      3.3 Normal Forms
      3.4 Codimension One Bifurcations of Equilibria
      3.5 Codimension One Bifurcations of Maps and Periodic Orbits
    CHAPTER 4
      Averaging and Perturbation from a Geometric Viewpoint
      4.1 Averaging and Poincare Maps
      4.2 Examples of Averaging
      4.3 Averaging and Local Bifurcations
      4.4 Averaging, Hamikonian Systems, and Global Behavior: Cautionary Notes
      4.5 Melnikov's Method: Perturbations of Planar Homoclinic Orbits
      4.6 Melnikov's Method: Perturbations of Hamiltonian Systems and Subharmonic Orbits
      4.7 Stability or Subharmonic Orbits
      4.8 Two Degree of Freedom Hamiltonians and Area Preserving Maps of the Plane
    CHAPTER 5
      Hyperbolic Sets, Symbolic Dynamics, and Strange Attractors
      5.0 Introduction
      5.1 The Smale Horseshoe: An Example of a Hyperbolic Limit Set
      5.2 Invariant Sets and Hyperbolicity
      5.3 Markov Partitions and Symbolic Dynamics
      5.4 Strange Auractors and the Stability Dogma
      5.5 Structurally Stable Attractors
      5.6 One-Dimensional Evidence for Strange Attractors
      5.7 The Geometric Lorenz Attractor
      5.8 Statistical Properties: Dimension, Entropy, and Liapunov Exponents
    CHAPTER 6
      Global Bifurcations
      6.1 Saddle Connections

      6.2 Rotation Numbers
      6.3 Bifurcations or One-Dimensional Maps
      6.4 The Lorenz Bifurcations
      6.5 Homoclinic Orbits in Three-Dimensional Flows: Silnikov's Example
      6.6 Homoclinic aifurcations of Periodic Orbits
      6.7 Wild Hyperbolic Sets
      6.8 Renormalization and Universality
    CHAPTER 7
      Local Codimension Two Bifurcations of Flows
      7.1 Degeneracy in Higher-Order Terms
      7.2 A Note on k-Jets and Determinacy
      7.3 The Double Zero Eigenvalue
      7.4 A Pure Imaginary Pair and a Simple Zero Eigenvalue
      7.5 Two Pure Imaginary Pairs of Eigenvalues without Resonance
      7.6 Applicaiions to Large Systems
    APPENDIX
    Suggestions for Further Reading
    Postscript Added at Second Printing
    Glossary
    References
    Index

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>