-
内容大纲
在过去20多年的时间里,本书一直是计算机领域的教师、学生和体系结构设计人员的必读之作。两位作者Hennessy和Patterson于2017年荣获图灵奖,肯定了他们对计算机领域持久而重要的技术贡献。随着处理器和系统架构的最新发展,第6版进行了全面修订。这一版采用RISC-V指令集体系结构,这是一个现代的RISC指令集,被设计为免费且可公开采用的标准。书中还增加了一个关于领域特定体系结构的新章节,并更新了关于仓储级计算的章节,其中介绍了谷歌最新的WSC。与本书之前版本的目标一样,本书致力于揭开计算机体系结构的神秘面纱,关注那些令人兴奋的技术创新,同时强调良好的工程设计。 -
作者介绍
-
目录
Chapter 1 Fundamentals of Quantitative Design and Analysis
1.1 Introduction
1.2 Classes of Computers
1.3 Defining Computer Architecture
1.4 Trends in Technology
1.5 Trends in Power and Energy in Integrated Circuits 23
1.6 Trends in Cost
1.7 Dependability
1.8 Measuring, Reporting, and Summarizing Performance
1.9 Quantitative Principles of Computer Design
1.10 Putting It All Together: Performance, Price, and Power
1.11 Fallacies and Pitfalls
1.12 Concluding Remarks
1.13 Historical Perspectives and References
Case Studies and Exercises by Diana Franklin
Chapter 2 Memory Hierarchy Design
2.1 Introduction
2.2 Memory Technology and Optimizations
2.3 Ten Advanced Optimizations of Cache Performance
2.4 Virtual Memory and Virtual Machines
2.5 Cross-Cutting Issues: The Design of Memory Hierarchies
2.6 Putting It All Together: Memory Hierarchies in the ARM Cortex-A53 and Intel Core i7 6700
2.7 Fallacies and Pitfalls
2.8 Concluding Remarks: Looking Ahead
2.9 Historical Perspectives and References
Case Studies and Exercises by Norman P. Jouppi, Rajeev Balasubramonian, Naveen Muralimanohar, and Sheng Li
Chapter 3 Instruction-Level Parallelism and Its Exploitation
3.1 Instruction-Level Parallelism: Concepts and Challenges
3.2 Basic Compiler Techniques for Exposing ILP
3.3 Reducing Branch Costs With Advanced Branch Prediction
3.4 Overcoming Data Hazards With Dynamic Scheduling
3.5 Dynamic Scheduling: Examples and the Algorithm
3.6 Hardware-Based Speculation
3.7 Exploiting ILP Using Multiple Issue and Static Scheduling
3.8 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation
3.9 Advanced Techniques for Instruction Delivery and Speculation
3.10 Cross-Cutting Issues
3.11 Multithreading: Exploiting Thread-Level Parallelism to Improve Uniprocessor Throughput
3.12 Putting It All Together: The Intel Core i7 6700 and ARM Cortex-A53
3.13 Fallacies and Pitfalls
3.14 Concluding Remarks: What’s Ahead?
3.15 Historical Perspective and References
Case Studies and Exercises by Jason D. Bakos and Robert P. Colwell
Chapter 4 Data-Level Parallelism in Vector, SIMD, and GPU Architectures
4.1 Introduction
4.2 Vector Architecture
4.3 SIMD Instruction Set Extensions for Multimedia
4.4 Graphics Processing Units
4.5 Detecting and Enhancing Loop-Level Parallelism
4.6 Cross-Cutting Issues
4.7 Putting It All Together: Embedded Versus Server GPUs and Tesla Versus Core i7
4.8 Fallacies and Pitfalls
4.9 Concluding Remarks
4.10 Historical Perspective and References
Case Study and Exercises by Jason D. Bakos
Chapter 5 Thread-Level Parallelism
5.1 Introduction
5.2 Centralized Shared-Memory Architectures
5.3 Performance of Symmetric Shared-Memory Multiprocessors
5.4 Distributed Shared-Memory and Directory-Based Coherence
5.5 Synchronization: The Basics
5.6 Models of Memory Consistency: An Introduction
5.7 Cross-Cutting Issues
5.8 Putting It All Together: Multicore Processors and Their Performance
5.9 Fallacies and Pitfalls
5.10 The Future of Multicore Scaling
5.11 Concluding Remarks
5.12 Historical Perspectives and References
Case Studies and Exercises by Amr Zaky and David A. Wood
Chapter 6 Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism
6.1 Introduction
6.2 Programming Models and Workloads for Warehouse-Scale Computers
6.3 Computer Architecture of Warehouse-Scale Computers
6.4 The Efficiency and Cost of Warehouse-Scale Computers
6.5 Cloud Computing: The Return of Utility Computing
6.6 Cross-Cutting Issues
6.7 Putting It All Together: A Google Warehouse-Scale Computer
6.8 Fallacies and Pitfalls
6.9 Concluding Remarks
6.10 Historical Perspectives and References
Case Studies and Exercises by Parthasarathy Ranganathan
Chapter 7 Domain-Specific Architectures
7.1 Introduction
7.2 Guidelines for DSAs
7.3 Example Domain: Deep Neural Networks
7.4 Google’s Tensor Processing Unit, an Inference Data Center Accelerator
7.5 Microsoft Catapult, a Flexible Data Center Accelerator
7.6 Intel Crest, a Data Center Accelerator for Training
7.7 Pixel Visual Core, a Personal Mobile Device Image Processing Unit
7.8 Cross-Cutting Issues
7.9 Putting It All Together: CPUs Versus GPUs Versus DNN Accelerators
7.10 Fallacies and Pitfalls
7.11 Concluding Remarks
7.12 Historical Perspectives and References
Case Studies and Exercises by Cliff Young
Appendix A Instruction Set Principles
A.1 Introduction
A.2 Classifying Instruction Set Architectures
A.3 Memory Addressing
A.4 Type and Size of Operands
A.5 Operations in the Instruction Set
A.6 Instructions for Control Flow
A.7 Encoding an Instruction Set
A.8 Cross-Cutting Issues: The Role of Compilers
A.9 Putting It All Together: The RISC-V Architecture
A.10 Fallacies and Pitfalls
A.11 Concluding Remarks
A.12 Historical Perspective and References
Exercises by Gregory D. Peterson
Appendix B Review of Memory Hierarchy
B.1 Introduction
B.2 Cache Performance
B.3 Six Basic Cache Optimizations
B.4 Virtual Memory
B.5 Protection and Examples of Virtual Memory
B.6 Fallacies and Pitfalls
B.7 Concluding Remarks
B.8 Historical Perspective and References
Exercises by Amr Zaky
Appendix C Pipelining: Basic and Intermediate Concepts
C.1 Introduction
C.2 The Major Hurdle of Pipelining—Pipeline Hazards
C.3 How Is Pipelining Implemented?
C.4 What Makes Pipelining Hard to Implement?
C.5 Extending the RISC V Integer Pipeline to Handle Multicycle Operations
C.6 Putting It All Together: The MIPS R4000 Pipeline
C.7 Cross-Cutting Issues
C.8 Fallacies and Pitfalls
C.9 Concluding Remarks
C.10 Historical Perspective and References
Updated Exercises by Diana Franklin
References
Index
Online Appendices
Appendix D Storage Systems
Appendix E Embedded Systems
by Thomas M. Conte
Appendix F Interconnection Networks
by Timothy M. Pinkston and Jos.e Duato
Appendix G Vector Processors in More Depth
by Krste Asanovic
Appendix H Hardware and Software for VLIW and EPIC
Appendix I Large-Scale Multiprocessors and Scientific Applications
Appendix J Computer Arithmetic
by David Goldberg
Appendix K Survey of Instruction Set Architectures
Appendix L Advanced Concepts on Address Translation
by Abhishek Bhattacharjee
Appendix M Historical Perspectives and References
同类热销排行榜
- C语言与程序设计教程(高等学校计算机类十二五规划教材)16
- 电机与拖动基础(教育部高等学校自动化专业教学指导分委员会规划工程应用型自动化专业系列教材)13.48
- 传感器与检测技术(第2版高职高专电子信息类系列教材)13.6
- ASP.NET项目开发实战(高职高专计算机项目任务驱动模式教材)15.2
- Access数据库实用教程(第2版十二五职业教育国家规划教材)14.72
- 信号与系统(第3版下普通高等教育九五国家级重点教材)15.08
- 电气控制与PLC(普通高等教育十二五电气信息类规划教材)17.2
- 数字电子技术基础(第2版)17.36
- VB程序设计及应用(第3版十二五职业教育国家规划教材)14.32
- Java Web从入门到精通(附光盘)/软件开发视频大讲堂27.92
推荐书目
-
孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...
-
时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...
-
本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...