欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 凝聚态物理学场论(第2版)(英文版)
      • 作者:(美)E.弗拉德金
      • 出版社:世界图书出版公司
      • ISBN:9787519264185
      • 出版日期:2019/09/01
      • 页数:838
    • 售价:75.6
  • 内容大纲

        本书用量子场论的概念阐述了凝聚态中最具挑战的物理学问题,内容论及重正化群、Luttinger液体、规范理论、拓扑流体、拓扑绝缘体和量子纠缠。本书从基本概念入手,依次将读者带入当今物理领域的研究前沿,如物质的拓扑相,量子与经典临界现象,量子霍尔效应和超导。同时,书中还包括一维强相关系统,量子有序相和无序相,以及凝聚态、场论和分形统计学中的拓扑结构。本书主要面向凝聚态、高能物理和弦理论领域,以及数学领域的科技工作者。
  • 作者介绍

  • 目录

    Preface to the second edition
    Preface to the first edition
    1  Introduction
        1.1   Field theory and condensed matter physics
        1.2   What has been included in this book (first edition)
        1.3   What was left out of the first edition
        1.4   What has been included in the second edition
    2  The Hubbard model
        2.1   Introduction
        2.2   Symmetries of the Hubbard model
        2.3   The strong-coupling limit
        2.4   The weak-coupling limit
        2.5   Correlation functions
    3  The magnetic instability of the Fermi system
        3.1   Mean-field theory
        3.2   Path-integral representation of the Hubbard model
        3.3   Path integrals and mean-field theory
        3.4   Fluctuations: the non-linear sigma model
        3.5   The Neel state and the non-linear sigma model
    4  The renormalization group and scaling
        4.1   Scale invariance
        4.2   Examples of fixed points
        4.3   Scaling behavior of physical observables
        4.4   General consequences of scale invariance
        4.5   Perturbative renormalization group about a fixed point
        4.6   The Kosterlitz renormalization group
    5  One-dimensional quantum antiferromagnets
        5.1   The spin- 1/2 Heisenberg chain
        5.2   Fermions and the Heisenberg model
        5.3   The quantum Ising chain
        5.4   Duality
        5.5   The quantum Ising chain as a free-Majorana-fermion system
        5.6   Abelian bosonization
        5.7   Phase diagrams and scaling behavior
    6  The Luttinger liquid
        6.1   One-dimensional Fermi systems
        6.2   Dirac fermions and the Luttinger model
        6.3   Order parameters of the one-dimensional electron gas
        6.4   The Luttinger model: bosonization
        6.5   Spin and the Luttinger model
        6.6   Scaling and renormalization in the Luttinger model
        6.7   Correlation functions of the Luttinger model
        6.8   Susceptibilities of the Luttinger model
    7  Sigma models and topological terms
        7.1   Generalized spin chains: the Haldane conjecture
        7.2   Path integrals for spin systems: the single-spin problem
        7.3   The path integral for many-spin systems
        7.4   Quantum ferromagnets
        7.5   The effective action for one-dimensional quantum antiferromagnets
        7.6   The role of topology

        7.7   Quantum fluctuations and the renormalization group
        7.8   Asymptotic freedom and Haldane's conjecture
        7.9   Hopf term or no Hopf term?
        7.10  The Wess-Zumino-Witten model
        7.11  A (brief) introduction to conformal field theory
        7.12  The Wess-Zumino-Witten conformal field theory
        7.13  Applications of non-abelian bosonization
    8  Spin-liquid states
        8.1   Frustration and disordered spin states
        8.2   Valence bonds and disordered spin states
        8.3   Spinons, holons, and valence-bond states
        8.4   The gauge-field picture of the disordered spin states
        8.5   Flux phases, valence-bond crystals, and spin liquids
        8.6   Is the large-N mean-field theory reliable?
        8.7   SU(2) gauge invariance and Heisenberg models Gauge theory, dimer models, and topological phases
        9.1   Fluctuations of valence bonds: quantum-dimer models
        9.2   Bipartite lattices: valence-bond order and quantum criticality
        9.3   Non-bipartite lattices: topological phases
        9.4   Generalized quantum-dimer models
        9.5   Quantum dimers and gauge theories
        9.6   The Ising gauge theory
        9.7   The Z2 confining phase
        9.8   The Ising deconfining phase: the Z2 topological fluid
        9.9   Boundary conditions and topology
        9.10  Generalized Z2 gauge theory: matter fields
        9.11  Compact quantum electrodynamics
        9.12  Deconfinement and topological phases in the U(1) gauge theory
        9.13  Duality transformation and dimer models
        9.14  Quantum-dimer models and monopole gases
        9.15  The quantum Lifshitz model
    10 Chiral spin states and anyons
        10.1  Chiral spin liquids
        10.2  Mean-field theory of chiral spin liquids
        10.3  Fluctuations and flux phases
        10.4  Chiral spin liquids and Chern-Simons gauge theory
        10.5  The statistics of spinons
        10.6  Fractional statistics
        10.7  Chern-Simons gauge theory: a field theory of anyons
        10.8  Periodicity and families of Chern-Simons theories
        10.9  Quantization of the global degrees of freedom
        10.10  Flux phases and the fractional quantum Hall effect
        10.11  Anyons at finite density
       10.12 The Jordan-Wigner transformation in two dimensions
    11 Anyon superconductivity
       11.1  Anyon superconductivity
       11.2  The functional-integral formulation of the Chern-Simons theory
       11.3  Correlation functions
       11.4  The semi-classical approximation
       11.5  Effective action and topological invariance
    12 Topology and the quantum Hall effect

        12.1  Quantum mechanics of charged particles in magnetic fields
        12.2  The Hofstadter wave functions
        12.3  The quantum Hall effect
        12.4  The quantum Hall effect and disorder
        12.5  Linear-response theory and correlation functions
        12.6  The Hall conductance and topological invariance
        12.7  Quantized Hall conductance of a non-interacting system
        12.8  Quantized Hall conductance of Hofstadter bands
    13 The fractional quantum Hall effect
        13.1  The Laughlin wave function
        13.2  Composite particles
        13.3  Landau-Ginzburg theory of the fractional quantum Hall effect
        13.4  Fermion field theory of the fractional quantum Hall effect
        13.5  The semi-classical excitation spectrum
        13.6  The electromagnetic response and collective modes
        13.7  The Hall conductance and Chern-Simons theory
        13.8  Quantum numbers of the quasiparticles: fractional charge
        13.9  Quantum numbers of the quasiparticles: fractional statistics
    14 Topological fluids
        14.1  Quantum Hall fluids on a toms
        14.2  Hydrodynamic theory
        14.3  Hierarchical states
        14.4  Multi-component abelian fluids
        14.5  Superconductors as topological fluids
        14.6  Non-abelian quantum Hall states
        14.7  The spin-singlet Halperin states
        14.8  Moore-Read states and their generalizations
        14.9  Topological superconductors
        14.10  Braiding and fusion
    15 Physics at the edge
        15.1  Edge states of integer quantum Hall fluids
        15.2  Hydrodynamic theory of the edge states
        15.3  Edges of general abelian quantum Hall states
        15.4  The bulk--edge correspondence
        15.5  Effective-field theory of non-abelian states
        15.6  Tunneling conductance at point contacts
        15.7  Noise and fractional charge
        15.8  Quantum interferometers
        15.9  Topological quantum computation
    16 Topological insulators
        16.1  Topological insulators and topological band structures
        16.2  The integer quantum Hall effect as a topological insulator
        16.3  The quantum anomalous Hall effect
        16.4  The quantum spin Hall effect
        16.5  Z2 topological invariants
        16.6  Three-dimensional topological insulators
        16.7  Solitons in polyacetylene
        16.8  Edge states in the quantum anomalous Hall effect
        16.9  Edge states and the quantum spin Hall effect
        16.10  Z2 topological insulators and the parity anomaly

        16.11  Topological insulators and interactions
        16.12  Topological Mott insulators and nematic phases
        16.13  Topological insulators and topological phases
    17 Quantum entanglement
       17.1  Classical and quantum criticality
       17.2  Quantum entanglement
       17.3  Entanglement in quantum field theory
       17.4  The area law
       17.5  Entanglement entropy in conformal field theory
       17.6  Entanglement entropy in the quantum Lifshitz universality class
       17.7  Entanglement entropy in φ4 theory
       17.8  Entanglement entropy and holography
       17.9  Quantum entanglement and topological phases
       17.10  Outlook
       References
       Index

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>