欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 云移动端和边缘智能设备的实用深度学习(影印版)(英文版)
      • 作者:(美)安尼如德·科尔//悉达哈·甘菊//梅赫尔·卡萨姆|责编:张烨
      • 出版社:东南大学
      • ISBN:9787564188825
      • 出版日期:2020/06/01
      • 页数:588
    • 售价:55.2
  • 内容大纲

        无论你是一名渴望进入人工智能世界的软件工程师,一名经验丰富的数据科学家,还是一名怀揣创造下一个人工智能爆款应用伟大梦想的业余爱好者,你都想知道要从哪里开始。这本循序渐进的指导书会教你如何通过实际动手操作的方式为云、移动端、浏览器和边缘设备构建实用的深度学习应用程序。
        Anirudh Koul、Siddha Ganju和Meher Kasam三位作者凭借多年的行业经验将深度学习研究转化为获奖的应用程序,指导你将想法转化为现实世界中的人们可以使用的产品。
  • 作者介绍

  • 目录

    Preface
    1. Exploring the Landscape of Artificial Intelligence
      An Apology
      The Real Introduction
      What Is AI?
        Motivating Examples
      A Brief History of AI
        Exciting Beginnings
        The Cold and Dark Days
        A Glimmer of Hope
        How Deep Learning Became a Thing
      Recipe for the Perfect Deep Learning Solution
        Datasets
        Model Architecture
        Frameworks
        Hardware
      Responsible AI
        Bias
        Accountability and Explainability
        Reproducibility
        Robustness
        Privacy
      Summary
      Frequently Asked Questions
    2. What's in the Picture: Image Classification with Keras
      Introducing Keras
      Predicting an Image's Category
      Investigating the Model
        ImageNet Dataset
        Model Zoos
        Class Activation Maps
      Summary
    3. Cats Versus Dogs: Transfer Learning in 30 Lines with Keras
      Adapting Pretrained Models to New Tasks
        A Shallow Dive into Convolutional Neural Networks
        Transfer Learning
        Fine Tuning
        How Much to Fine Tune
      Building a Custom Classifier in Keras with Transfer Learning
      Organize the Data
      Build the Data Pipeline
        Number of Classes
        Batch Size
      Data Augmentation
      Model Definition
      Train the Model
        Set Training Parameters
        Start Training
      Test the Model
      Analyzing the Results

      Further Reading
      Summary
    4. Building a Reverse Image Search Engine: Understanding Embedflings
      Image Similarity
      Feature Extraction
      Similarity Search
       Visualizing Image Clusters with t-SNE
      Improving the Speed of Similarity Search
        Length of Feature Vectors
        Reducing Feature-Length with PCA
      Scaling Similarity Search with Approximate Nearest Neighbors
        Approximate Nearest-Neighbor Benchmark
      ……
    5. From Novice to Master Predictor: Maximizing Convolutional Neural Network Accuracy
    6. Maximizing Speed and Performance of TensorFlow: A Handy Checklist
    7. Practical Tools, Tips, and Tricks
    8. Cloud APIs for Computer Vision: Up and Running in 15 Minutes
    9. Scalable Inference Serving on Cloud with TensorFlow Serving and KubeFlow
    10. AI in the Browser with TensorFlow. js and ml5.js
    11. Real-Time Object Classification on iOS with Core ML
    12. Not Hotdog on iOS with Core ML and Create ML
    13. Shazam for Food: Developing Android Apps with TensorFlow Lite and ML Kit
    14. Building the Purrfect Cat Locator App with TensorFlow Object Detection API
    15. Becoming a Maker: Exploring Embedded AI at the edge
    16. Simulating a Self-Driving Car Using End-to-End Deep Learning with Keras
    17. Building an Autonomous Car in Under and Hour: Reinforcement Learning with AWS DeepRacer
    A. A Crash Course in Convolutional Neural Networks
    Index