欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 学习量子比特(影印版)(英文版)
      • 作者:(美)罗伯特·S.萨托|责编:张烨
      • 出版社:东南大学
      • ISBN:9787564189747
      • 出版日期:2020/08/01
      • 页数:488
    • 售价:47.6
  • 内容大纲

        量子计算正在改变我们对于计算机的思考方式。量子比特(quantum bits),又称qubits,可以解决当前计算技术难以解决的问题。
        本书首先概述了量子计算与传统计算如此不同的原因,并讲述了可能会对量子计算产生重大影响的一些行业案例。对理解诸如叠加、纠缠和干涉等概念所必需的经典计算理论和数学基础进行了更全面的讲解。接下来是电路和算法。既有基础的,也有更复杂的。然后,对构建量子计算硬件背后的物理和工程思想娓娓道来。最后,本书展望了未来前景并提供了指引,帮助读者了解日后的发展会如何影响到个人。
        真正理解量子计算需要大量的数学知识,而本书也不会回避必要的数学概念。每个主题均以清晰的文字和有用的示例进行介绍和详尽解释。
        你将从本书中学到:
        量子计算的工作原理、与众不同之处及其如此强大的原因;
        探索量子系统背后令人费解的复杂支撑机制;
        理解经典计算和量子计算背后的必要概念;
        复习并扩展基础数学、计算理论和量子理论知识;
        探索量子计算在科学计算、人工智能和其他领域的主要应用;
        考察有关量子比特、量子电路和量子算法的详细概述。
  • 作者介绍

        罗伯特·S.萨托 has been a technical leader and executive in the IT industry for over 30 years. More than two decades of that have been spent in IBM Research in New York. During his time there, he worked on or led efforts in symbolic mathematical computation, optimization, AI, blockchain, and quantum computing. He is the co-author of several research papers and the book Axiom: The Scientific Computation System with the late Richard D. Jenks.     He also was an executive on the software side of the business in areas including emerging industry standards, software on Linux, mobile, and open source. He's a theoretical mathematician by training, has a Ph.D. from Princeton University, and an undergraduate degree from Harvard College. He started coding when he was 15 and has used most of the programming languages that have come along.
  • 目录

    Preface
    1  Why Quantum Computing?
      1.1  The mysterious quantum bit
      1.2  I'm awake!
      1.3  Why quantum computing is different
      1.4  Applications to artificial intelligence
      1.5  Applications to financial services
      1.6  What about cryptography?
      1.7  Summary
    I  Foundations
      2  They're Not Old, They're Classics
        2.1  What's inside a computer?
        2.2  The power of two
        2.3  True or false?
        2.4  Logic circuits
        2.5  Addition, logically
        2.6  Algorithmically speaking
        2.7  Growth, exponential and otherwise
        2.8  How hard can that be?
          2.8.1  Sorting
          2.8.2  Searching
        2.9  Summary
      3  More Numbers than You Can Imagine
        3.1  Natural numbers
        3.2  Whole numbers
        3.3  Integers
        3.4  Rational numbers
          3.4.1  Fractions
          3.4.2  Getting formal again
        3.5  Real numbers
          3.5.1  Decimals
          3.5.2  Irrationals and limits
          3.5.3  Binary forms
          3.5.4  Continued fractions
        3.6  Structure
          3.6.1  Groups
          3.6.2  Rings
          3.6.3  Fields
          3.6.4  Even greater abstraction
        3.7  Modular arithmetic
        3.8  Doubling down
        3.9  Complex numbers, algebraically
          3.9.1  Arithmetic
          3.9.2  Conjugation
          3.9.3  Units
          3.9.4  Polynomials and roots
        3.10  Summary
      4  Planes and Circles and Spheres, Oh My
        4.1  Functions
        4.2  The real plane

          4.2.1  Moving to two dimensions
          4.2.2  Distance and length
          4.2.3  Geometric figures in the real plane
          4.2.4  Exponentials and logarithms
        4.3  Trigonometry
          4.3.1  The fundamental functions
          4.3.2  The inverse functions
          4.3.3  Additional identities
        4.4  From Cartesian to polar coordinates
        4.5  The complex "plane"
        4.6  Real three dimensions
        4.7  Summary
      5  Dimensions
      6  What Do You Mean "Probably"?
    II  Quantum Computing
      7  One Qubit
      8  Two Qubits, Three
      9  Wirina Up the Circuits
      10  From Circuits to Algorithms
      11  Getting Physical
      12  Questions about the Future
    Afterword
    Appendices
      A  Quick Reference
      B  Symbols
      C  Notices
      D  Production Notes
    Other Books You May Enjoy
    Index