濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌熼梻瀵割槮缁惧墽绮换娑㈠箣閻戝棛鍔┑鐐村灦閻燂箓宕曢悢鍏肩厪濠电偛鐏濋崝姘舵煟鎼搭喖寮慨濠冩そ瀹曟鎳栭埞鍨沪闂備礁鎼幊蹇曞垝瀹€鍕仼闁绘垼妫勯拑鐔兼煏婢舵稓鐣遍柍褜鍓涢弫濠氬蓟閵娿儮鏀介柛鈩冧緱閳ь剚顨婇弻锛勨偓锝庡亞閵嗘帞绱掓潏銊ユ诞闁糕斁鍋撳銈嗗笒鐎氼剛澹曢崗鍏煎弿婵☆垰鐏濇禍褰掓煕閻愬灚鏆柡宀嬬秮閹晠鎮滃Ο绯曞亾閸愵喗鍋i柍褜鍓熼弫鍐焵椤掆偓瀹撳嫰姊洪崨濠勨槈閺嬵亜霉濠婂嫮鐭掗柡灞诲姂瀵潙螖閳ь剚绂嶆ィ鍐╁€垫繛鍫濈仢閺嬫稑顭胯闁帮綁鐛幋锕€顫呴柣姗嗗亝閺傗偓闂佽鍑界紞鍡樼鐠烘í缂氬┑鐘叉处閳锋垹绱撴担鍏夋(妞ゅ繐瀚烽崵鏇㈡偣閾忚纾柟鐑橆殔缁犳盯鏌eΔ鈧悧鍐箯濞差亝鈷掗柛灞炬皑婢ф稓绱掔€n偄娴鐐寸墵楠炲洭顢橀悩娈垮晭闁诲海鎳撴竟濠囧窗閺嶎厾宓侀柡宥庡幗閻撶喖鏌ㄥ┑鍡樺櫣婵¤尙绮妵鍕敃閿濆洨鐣奸梺鍦嚀鐎氫即骞栬ぐ鎺撳仭闁哄娉曢鍥⒒閸屾艾鈧娆㈠璺虹劦妞ゆ帒鍊告禒婊堟煠濞茶鐏¢柡鍛板煐鐎佃偐鈧稒岣块崢鐐繆閵堝繒鐣虫繛澶嬫礈閼洪亶宕稿Δ浣哄帾闂佹悶鍎崝灞炬叏瀹ュ棭娈介柣鎰綑濞搭喗顨ラ悙宸剶闁诡喗绮撳畷鍗烆潨閸℃﹫绱欓梻鍌氬€搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇氱秴闁搞儺鍓﹂弫宥夋煟閹邦厽缍戦柍褜鍓濋崺鏍崲濠靛顥堟繛鎴炶壘椤e搫顪冮妶鍐ㄥ姕鐎光偓閹间礁钃熸繛鎴旀噰閳ь剨绠撻獮瀣攽閸モ晙绨┑鐘殿暯閸撴繆銇愰崘顔藉亱闁规崘顕ч拑鐔兼煥閻斿搫孝缂佲偓閸愵喗鐓冮柛婵嗗閳ь剚鎮傚鍐参旈崨顔规嫼婵炴潙鍚嬮悷褏绮旈鈧湁婵犲﹤楠告晶鐗堜繆閸欏濮嶆鐐村笒铻栭柍褜鍓氶崕顐︽煟閻斿摜鐭婇梺甯到椤曪綁骞庨挊澶屽幐闂佸憡鍔︽禍鐐烘晬濠婂牊鐓涘璺猴功婢ф垿鏌涢弬璺ㄐч挊鐔兼煕椤愮姴鍔滈柣鎾寸☉闇夐柨婵嗙墱濞兼劗鈧娲栭惌鍌炲蓟閳╁啯濯撮悷娆忓绾炬娊姊烘潪鎵妽闁圭懓娲顐﹀箻缂佹ɑ娅㈤梺璺ㄥ櫐閹凤拷 [闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ帊绀侀崜顓烆渻閵堝棗濮х紒鐘冲灴閻涱噣濮€閵堝棛鍘撻柡澶屽仦婢瑰棝宕濆鍡愪簻闁哄倸鐏濋顐ょ磼鏉堛劍宕岀€规洘甯掗~婵嬵敄閽樺澹曢梺鍛婄缚閸庢娊鎯屽▎鎾寸厱闁哄洢鍔岄悘鐘电磼閻欌偓閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟� | 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵姘ㄧ槐鎾诲磼濞嗘帒鍘$紓渚囧櫘閸ㄨ泛鐣峰┑鍠棃宕橀妸銉т喊闂備礁鎼崯顐︽偋婵犲洤纾瑰┑鐘崇閻撱垺淇婇娆掝劅婵″弶鎮傞弻锝嗘償椤旂厧绫嶅┑顔硷龚濞咃絿鍒掑▎鎾崇閹兼番鍨虹€氭娊姊绘担铏广€婇柡鍛洴瀹曨垶寮堕幋顓炴闂佸綊妫跨粈渚€宕橀埀顒€顪冮妶鍡樺暗闁哥姵鎹囧畷銏ゎ敂閸涱垳鐦堥梺姹囧灲濞佳勭濠婂牊鐓熼煫鍥ㄦ⒒缁犵偟鈧娲樼换鍌烇綖濠靛鍤嬮柣銏ゆ涧楠炴劙姊绘担鍛靛綊寮甸鍕┾偓鍐川椤旂虎娲搁梺璺ㄥ櫐閹凤拷]

    • 信息论与可靠通信(英文版)
      • 作者:(美)罗伯特·加拉格尔|责编:陈亮//夏丹
      • 出版社:世界图书出版公司
      • ISBN:9787519275945
      • 出版日期:2020/07/01
      • 页数:588
    • 售价:59.2
  • 内容大纲

        《信息论与可靠通信》是信息领域诺贝尔奖级别泰斗罗伯特·加拉格尔(Robert G. Gallager)所著的一本信息论圣经,一代一代的信息论学者都是读着这本世界经典成长起来的。作者在美国麻省理工学院师从信息论创始人克劳德·香农(Claude E. Shannon)及另两位最早期的香农奖得主罗伯特·法诺(Robert M. Fano)和彼得·埃里亚斯(Peter Elias),博士毕业后一直在麻省理工学院任教至今,被誉为香农以后最伟大的信息论学者。他1960年博士论文中提出的“低密度奇偶校验码”是目前所有5G设备都必用的信道编码。《信息论与可靠通信》一书中有不少内容是作者当年首次提出的原创性成果,对信息论的发展有极大的推动作用。书中深入研究了通信系统中信源和信道的数学模型,并探索了构建真实世界中信源和信道详细模型的框架。然后,作者通过将编码器和解码器分为两个部分进一步阐述信息论原理,并研究构成有效通信系统的机制。本书适合作为电子工程、计算机科学以及数学相关专业的高年级本科生和研究生的信息论课程教材,也可供研究人员和专业人士参考。“香农信息科学经典”系列还出版了加拉格尔教授所著的另两本名著《麻省理工加拉格尔数字通信原理》和《数据网络(第2版)》。
  • 作者介绍

        罗伯特·加拉格尔(Robert G.Gallager)教授是美国国家科学院与国家工程院的两院院士。他曾担任国际信息论学会的主席,他于1983年获得信息论的最高奖——香农奖(相当于信息论领域的诺贝尔奖),1990年获得国际电气电子工程师学会最高荣誉奖章(相当于电子工程领域的诺贝尔奖),2003年获得马可尼奖(相当于通信领域的诺贝尔奖),2020年获得日本国际奖(相当于整个应用科学领域的诺贝尔奖)。加拉格尔教授于1960年在美国麻省理工学院获得博士学位后留校任教至今,他1960年博士论文中提出的“低密度奇偶校验码”(LDPC code)是目前所有5G设备都必用的信道编码。他培养出的博士埃尔达尔·阿里坎(Erdal Arikan)提出了5G通信中的另一种重要信道编码“极化码”(Polar code)。
  • 目录

    1  Communication Systems and Information Theory
      1.1  Introduction
      1.2  Source Models and Source Coding
      1.3  Channel Models and Channel Coding
      Historical Notes and References
    2  AMeasure of Information
      2.1  Discrete Probability:Review and Notation
      2.2  Definition of Mutual Information
      2.3  Average Mutual Information and Entropy
      2.4  Probability and MutualInformation for Continuous Ensembles
      2.5  Mutual Information for Arbitrary Ensembles
      Summary and Conclusions
      Historical Notes and References
    3  Coding for Discrete Sources
      3.1  Fixed-Length Codes
      3.2  Variable-Length Code Words
      3.3  A Source Coding Theorem
      3.4  An Optimum Variable-Length Encoding Procedure
      3.5  Discrete Stationary Sources
      3.6  Markov Sources
      Summary and Conclusions
      Historical Notes and References
    4  Discrete Memoryless Channels and Capacity
      4.1  Classification of Channels
      4.2  Discrete Memoryless Channels
      4.3  The Converse to the Coding Theorem
      4.4  Convex Functions
      4.5  Finding Channel Capacity for a Discrete Memoryless Channel
      4.6  Discrete Channels with Memory
        Indecomposable Channels
      Summary and Conclusions
      Historical Notes and References
      Appendix 4A
    5  The Noisy-Channel Couing Theorem
      5.1  Block Codes
      5.2  Decoding Block Codes
      5.3  Error Probability for Two Code Words
      5.4  The Generalized Chebyshev Inequality and the Chermor Bound
      5.5  Randomly Chosen Code Words
      5.6  Many Code Words-The Coding Theorem
        Properties of the Random Coding Exponent
      5.7  Eror Probability for an Expurgated Ensemble of Codes
      5.8  Lower Bounds to Error Probability
        Block Error Probability at Rates above Capacity
      5.9  The Coding Theorem for Finite-State Channels
        State Known at Receiver
      Summary and Conclusions
      Historical Notes and References
      Appendix 5A
      Appendix 5B

    6  Techniques for Coding and Decoding
      6.1  Parity-Check Codes
        Generator Matrices
        Parity-Check Matrices for Systematic Parity-Check Codes
        Decoding Tables
        Hamming Codes
      6.2  The Coding Theorem for Parity-Check Codes
      6.3  Group Theory
        Subgroups
        Cyclic Subgroups
      6.4  Fields and Polynomials
        Polynomials
      6.5  Cyclic Codes
      6.6  Galois Fields
        Maximal Length Codes and Hamming Codes
        Existence of Galois Fields
      6.7  BCH Codes
        Iterative Algorithm for Finding o(D)
      6.8  Convolutional Codes and Threshold Decoding
      6.9  Sequential Decoding
        Computation for Sequential Decoding
        Error Probability for Sequential Decoding
      6.10  Coding for Burst Noise Channels
        Cyclic Codes
        Convolutional Codes
      Summary and Conclusions
      Historical Notes and References
      Appendix 6A
      Appendix 6B
    7  Memoryless Channels with Discrete Time
      7.1  Introduction
      7.2  Unconstrained Inputs
      7.3  Constrained Inputs
      7.4  Additive Noise and Additive Gaussian Noise
        Additive Gaussian Noise with an Energy Constrained Input
      7.5  Parallel Additive Gaussian Noise Channels
      Summary and Conclusions
      Historical Notes and References
    8  Waveform Channels
      8.1  Orthonormal Expansions of Signals and White Gaussian Noise
        Gaussian Random Processes
        Mutual Information for Continuous-Time Channels
      8.2  White Gaussian Noise and Orthogonal Signals
        Error Probability for Two Code Words
        Error Probability for Orthogonal Code Words
      8.3  Heuristic Treatment of Capacity for Channels with Additive
        Gaussian Noise and Bandwidth Constraints
      8.4  Representation of Linear Filters and Nonwhite Noise
        Filtered Noise and the Karhunen-Loeve Expansion
        Low-Pass Ideal Filters

      8.5  Additive Gaussian Noise Channels with an Input Constraine in Power and Frequency
      8.6  Fading Dispersive Channels
      Summary and Conclusions
      Historical Notes and References
    9  Source Coding with a Fidelity Criterion
      9.1  Introduction
      9.2  Discrete Memoryless Sources and Single-Leer Distorton Measures
      3.3  The Coding Theorem for Sources with a Fidelity Criterior
      9.4  Calculation of R(d*)
      9.5  The Converse to the Noisy-Channel Coding Theorem Revisited
      9.6  Discrete-Time Sources with Continuous Amplitudes
      9.7  Gausian Sources with Square Difference Distortion
        Gaussian Random-Process Sources
      9.8  Discrete Ergodic Sources
      Summary and Conclusions
      Historical Notes and References
      Exercises and Problems
      References and Selected Reading
      Glossary of Symbols
    Index

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>