欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • d波超导体/高瞻系列/中外物理学精品书系
      • 作者:向涛|责编:刘啸|译者:吴从军
      • 出版社:北京大学
      • ISBN:9787301313343
      • 出版日期:2020/08/01
      • 页数:390
    • 售价:47.2
  • 内容大纲

        本书以高温超导体为背景,主要是介绍d波超导体在超导相的物理性质,作为实例也分析和总结了高温超导体的一些实验结果;强调物理图像的描述,对重要的理论结果都有比较完整的推导,反映了作者对高温超导前沿问题的理解,同时也部分融入了他自己的研究成果。
        全书共分13章。第1章介绍了超导的一些基本概念,并简要综述了BCS超导理论的基本思路和框架。其中对一些在超导研究中日益显得重要的基本概念,例如超导准粒子的概率流与电流密度的差异、非对角长程序与BCS平均场理论的关系、对称性自发破缺与迈斯纳效应等,也做了讨论。第2章介绍了高温超导的一些微观模型。第3至13章系统介绍了d波超导体的各种热力学和电磁响应函数的物理性质,其中包括超导能隙函数和比热等随温度的变化行为,d波超导体准粒子的激发谱和光电响应行为,Andreev反射和单电子的隧道理论,约瑟夫森效应和相位敏感实验,杂质散射效应,超导电子的超流密度、光电导、热导、拉曼光谱、核磁共振以及在混合态中的行为等。这些章节着重讨论了d波超导体的各种普适行为,主要结果都有比较详细的理论推导,并与高温超导体的实验结果做了比较。
        本书可作为高等院校本科生和研究生凝聚态理论学习的参考书,特别是为学习和研究非常规超导体的机理及其相关问题的学生和科研人员提供了比较全面和实用的参考。
  • 作者介绍

        向涛,中国科学院物理研究所研究员,中国科学院院士、发展中国家科学院院士。1984年本科毕业于清华大学,1986年在清华大学获得硕士学位,1990年在中国科学院理论物理研究所获得博士学位。《中国物理快报》主编。从事凝聚态物理,特别是强关联量子问题的理论研究。
  • 目录

    Chapter 1 Introduction to Superconductivity
      1.1  Basic Properties of Superconductivity
      1.2  Two Characteristic Length Scales
      1.3  Two-Fluid Model and London Equations
      1.4  Cooper Pairing
      1.5  Mean-Field Theory of Superconductivity
      1.6  Bogoliubov-de Gennes Self-Consistent Equations
      1.7  Charge and Probability Current Density Operators of Supercon
      ducting Quasiparticles
      1.8  Off-Diagonal Long Range Order
      1.9  Ginzburg-Landau Free Energy
      1.10  Spontaneous Symmetry Breaking and Meissner Effect
      1.11  Two Characteristic Energy Scales
      1.12  Pairing Mechanism
      1.13  Classification of Pairing Symmetry
      1.14  Pairing Symmetry of High-Tc Superconductors
    Chapter 2 Microscopic Models for High Temperature Superconductors
      2.1  Phase Diagram of Cuprate Superconductors
      2.2  Antiferromagnetic Insulating States
      2.3  The Three-Band Model
      2.4  The dp-Model of Interacting Spins and Holes
      2.5  The Zhang-Rice Singlet
      2.6  The Hubbard Model
      2.7  Electronic Structure along the c-Axis
      2.8  Systems Doped with Zn-or Ni-Impurities
        2.8.1  The Zn Impurity
        2.8.2  The Ni Impurity
    Chapter 3 Fundamental Properties of d-Wave Superconductor
      3.1  Gap Function
      3.2  Density of States
      3.3  Entropy
      3.4  Specific Heat
      3.5  Gap Operators in the Continuum Limit
      3.6  The Probability Current and Electric Current Operators
    Chapter 4 Quasiparticle Excitation Spectra
      4.1  Single-Particle Spectral Function
      4.2  ARPES
      4.3  Fermi Surface and Luttinger Sum Rule
      4.4  Particle-Hole Mixing and Superconducting Energy Gap
      4.5  Scattering between Quasiparticles
    Chapter 5 Tunneling Effect
      5.1  Electron Scattering on the Surface of a Superconductor
      5.2  Tunneling Conductance
      5.3  Scattering from the 6-Function Interface Potential
      5.4  The Surface Bound State
      5.5  Tunneling Hamiltonian
      5.6  Tunneling Current
      5.7  Tunneling Current of Quasiparticles
    Chapter 6 Josephson Effect
      6.1  Josephson Tunneling Current

      6.2  Spontaneous Magnetic Flux Quantization
      6.3  The Phase-Sensitive Experiments
        6.3.1  Quantum Interference Effect of Josephson Junctions
        6.3.2  Spontaneous Quantized Flux
      6.4  Paramagnetic Meissner Effect
    Chapter 7 Single Impurity Scattering
      7.1  Non-Magnetic Impurity Scattering
      7.2  The Resonance State
      7.3  Correction to the Quasiparticle Density of States
      7.4  Tunneling Spectrum of the Zn-Impurity Resonance State
      7.5  Comparison with the Anisotropic s-Wave Superconductors
      7.6  The Classical Spin Scattering
      7.7  The Kondo Effect
    Chapter 8 Many-Impurity Scattering
      8.1  Scattering Potential and Disorder Average
      8.2  The Self-Energy Function
      8.3  The Born Scattering Limit
      8.4  The Resonant Scattering Limit
      8.5  Correction to the Superconducting Critical Temperature
      8.6  Density of States
      8.7  Entropy and Specific Heat
    Chapter 9 Superfluid Response
      9.1  The Linear Response Theory
      9.2  The In-Plane Superfluid Density
      9.3  The Superfluid Density along the c-Axis
      9.4  Impurity Correction
      9.5  Superfluid Response in Weakly Coupled Two-Band
      Superconductors
      9.6  The Electron-Doped High-Tc Superconductors
      9.7  The Non-Linear Effect
      9.8  Relationship between the Magnetic Penetration Depth and the
      Superfluid Density
      9.9  The Non-Local Effect
    Chapter 10 Optical and Thermal Conductivities
      10.1  Optical Conductivity
      10.2  The Optical Sum Rule
      10.3  Light Absorption in the Dirty Limit
      10.4  Effect of Elastic Impurity Scattering
      10.5  Microwave Conductivity of High-T. Superconductors
      10.6  The Heat Current Density Operator
      10.7  The Universal Thermal Conductivity
    Chapter 11 Raman Spectroscopy
      11.1  Raman Response Function
      11.2  Vertex Correction by the Coulomb Interaction
      11.3  The Raman Response Function of d-Wave Superconductors
      11.4  Effect of Non-Magnetic Impurity Scattering
      11.5  Experimental Results of High-T Superconductors
    Chapter 12 Nuclear Magnetic Resonance
      12.1  Spin Correlation Function
      12.2  Hyperfine Interaction

      12.3  Knight Shift
      12.4  Spin-Lattice Relaxation
      12.5  Effect of Impurity Scattering
      12.6  Contribution of Impurity Resonance States
      12.7  Experimental Results of High-Tc Superconductors
    Chapter 13 The Mixed State
      13.1  The Semi-Classical Approximation
      13.2  Low Energy Density of States
      13.3  Universal Scaling Laws
    Appendix A Bogoliubov Transformation
      A.1  Fermi Systems
      A.2  Bose Systems
    Appendix B Hohenberg Theorem
      B.1  Bogoliubov Inequality
      B.2  Physical Meaning of the Bogoliubov Inequality
      B.3  Bose Systems
      B.4  Fermi Systems
    Appendix C Degenerate Perturbation Theory
    Appendix D Anderson Theorem
    Appendix E Sommerfeld Expansion
    Bibliography