欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 图像处理中的信息论方法(全彩英文版香农信息科学经典)
      • 作者:(西)米格尔·费萨斯//安东·巴德拉//海梅·里高//徐庆//(西)马修·斯伯特|责编:陈亮//夏丹
      • 出版社:世界图书出版公司
      • ISBN:9787519275983
      • 出版日期:2020/08/01
      • 页数:148
    • 售价:55.6
  • 内容大纲

        信息论方法广泛应用于工程、物理、遗传学、神经科学等科学领域,在图像处理中也逐渐成为有用的工具。本书中介绍了信息论的基本概念,以及其如何在配准、分割、视频处理和计算美学等图像处理领域中应用。本书提出的一些方法,例如将互信息应用于图像配准,是图像处理的最新技术。本书强调了信息论方法的共性方面,并以统一的方式介绍它们,以便向读者表明信息论方法可以帮助解决图像处理中的哪些问题,提供哪些特定工具,以及如何应用它们。本书可供图像处理以及相关领域(例如计算机图形和可视化)的学生和技术人员学习阅读,IT领域学生和从业人员都会对了解这些应用感兴趣。
  • 作者介绍

  • 目录

    Preface
    Acknowledgments
    1  Information Theory Basics
      1.1  Entropy
      1.2  Relative Entropy and Mutual Information
      1.3  Decomposition of Mutual Information
      1.4  Inequalities
        1.4.1  Jensen's Inequality
        1.4.2  Log-sum Inequality
        1.4.3  Jensen-Shannon Inequality
        1.4.4  Data Processing Inequality
      1.5  Entropy Rate
      1.6  Entropy and Coding
      1.7  Continuous Channel
      1.8  Information Bottleneck Method
      1.9  f-Divergences
      1.10  Generalized Entropies
      1.11  The Similarity Metric
    2  Image Registration
      2.1  The Registration Pipeline
        2.1.1  Spatial Transform
        2.1.2  Interpolation
        2.1.3  Metric
        2.1.4  Optimization
      2.2  Similarity Metrics based on Shannon's Information Measures
        2.2.1  Information Channel
        2.2.2  Joint Entropy
        2.2.3  Mutual Information
        2.2.4  Normalized Measures
      2.3  Probability Density Function Estimation
        2.3.1  Histogram Estimation
        2.3.2  Parzen Window Estimation
        2.3.3  Entropic Spanning Graphs
      2.4  High-dimensional Information Measures Including Spatial Information
      2.5  Image Registration based on f-divergences
      2.6  Similarity Measures based on Generalized Entropies
      2.7  Measures based on The Similarity Metric
      2.8  Image Fusion
        2.8.1  Communication Channel
        2.8.2  Specific Information
        2.8.3  Fusion Criteria
        2.8.4  Visualization
    3  Image Segmentation
      3.1  Maximum Entropy Thresholding
        3.1.1  Entropy
        3.1.2  Relative Entropy
      3.2  Thresholding Considering Spatial Information
        3.2.1  Grey-level Co-occurrence Matrix
        3.2.2  Minimum Spatial Entropy Thresholding
        3.2.3  Excess Entropy

      3.3  Evolving Curves
      3.4  Information Bottleneck Method for Image Segmentation
        3.4.1  Split-and-Merge Algorithm
        3.4.2  Histogram Clustering
        3.4.3  Registration-based Segmentation
    4  Video Key Frame Selection
      4.1  Related Work and First IT-based Approaches
      4.2  Key Frame Selection based on Jensen-Shannon Divergence and Jensen-Renyi Divergence
        4.2.1  Jensen-Renyi Divergence
        4.2.2  The Core Computational Mechanism
        4.2.3  Locating Shots,Subshots,and Key Frames
      4.3  Key Frame Selection Techniques Using Tsallis Mutual Information and Jensen-Tsallis Divergence for Shots with Hard Cuts
        4.3.1  Mutual Information-based Similarity between Frames
        4.3.2  Jensen-Tsallis-based Similarity between Frames
        4.3.3  Keyframe Selection
      4.4  Experimental Results
        4.4.1  Results on JS and JR-based Methods
        4.4.2  Results on JT and TMI Driven Techniques
      4.5  Conclusion
    5  Informational Aesthetics Measures
      5.1  Introduction
      5.2  Origins and Related Work
      5.3  Global Aesthetic Measures
        5.3.1  Shannon's Perspective
        5.3.2  Kolmogorov's Perspective
        5.3.3  Zurek's Perspective
      5.4  Compositional Aesthetic Measures
        5.4.1  Order as Self-Similarity
        5.4.2  Interpreting Bense's Channel
      5.5  Informational Analysis of Van Gogh's Periods
      5.6  Towards Auvers Period: Evolution of van Gogh's Style
        5.6.1  Randomness
        5.6.2  Structural com plexity
        5.6.3  Artistic Analysis
      5.7  Color and Regional Information
    A  Digital-Image-Palette
    Bibliography
    Authors' Biographies