欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 数据科学导论(基于Python语言微课版高等院校十三五规划教材)/Python系列
      • 作者:编者:朝乐门|责编:孙燕燕
      • 出版社:人民邮电
      • ISBN:9787115548207
      • 出版日期:2021/01/01
      • 页数:202
    • 售价:16.8
  • 内容大纲

        本书重点讲解数据科学的核心理论与实践应用。全书共7章,主要介绍数据科学的基础理论、统计学与模型、机器学习与算法、数据可视化、数据加工、大数据技术、数据产品开发及数据科学中的人文与管理等内容。本书内容通俗易懂,深入浅出,便于读者理解。
        本书可作为数据科学与大数据技术、大数据管理与应用、计算机科学与技术、管理科学与工程、工商管理、数据统计、数据分析、信息管理与信息系统、商业分析等多个专业的教材,也可作为数据科学从业人士的参考用书。
  • 作者介绍

        朝乐门,1979年生,中国人民大学数据工程与知识工程教育部重点实验室、信息资源管理学院副教授,博士生导师;章鱼大数据首席数据科学家:中国计算机学会信息系统专委员会委员、ACM高级会员、国际知识管理协会正式委员、全国高校大数据教育联盟大数据教材专家指导委员会委员;获得北京市中青年骨干教师称号、国际知识管理与智力资本杰出成就奖、Emerald/EFMD国际杰出博士论文奖、国家自然科学基金项目优秀项目、中国大数据学术创新奖和中国大数据创新百人等多种奖励30余项。朝乐门是我国第一部系统阐述数据科学理念、理论、方法、技术和工具的重要专著——《数据科学》(清华大学出版社,2016)的作者。
  • 目录

    第1章  数据科学的基础理论
      1.1  为什么要学习数据科学
      1.2  数据科学的定义
      1.3  数据科学的知识体系
      1.4  数据科学的基本流程
      1.5  数据科学与其他学科的区别
        1.5.1  学科定位
        1.5.2  研究视角
        1.5.3  研究范式
      1.6  数据科学的人才类型
      1.7  数据科学的常用工具
      1.8  数据科学的相关应用
      1.9  继续学习本章知识
      习题
    第2章  统计学与模型
      2.1  统计学与数据科学
        2.1.1  描述统计与推断统计
        2.1.2  基本分析法和元分析法
      2.2  统计方法的选择思路
      2.3  数据划分及准备方法
        2.3.1  自变量与因变量
        2.3.2  数据抽样
      2.4  参数估计与假设检验
        2.4.1  参数估计
        2.4.2  假设检验
      2.5  常用统计方法及选择
        2.5.1  相关分析
        2.5.2  回归分析
        2.5.3  方差分析
        2.5.4  分类分析
        2.5.5  聚类分析
        2.5.6  时间序列分析
        2.5.7  关联规则分析
      2.6  统计学面临的挑战
      2.7  Python编程实践
      2.8  继续学习本章知识
      习题
    第3章  机器学习与算法
      3.1  数据科学与机器学习
      3.2  机器学习的应用步骤
      3.3  数据划分及准备方法
      3.4  算法类型及选择方法
      3.5  模型的评估方法
      3.6  机器学习面临的挑战
      3.7  Python编程实践
      3.8  继续学习本章知识
      习题
    第4章  数据可视化
      4.1  数据科学与数据可视化
      4.2  数据可视化的基本原则

      4.3  视觉编码与数据类型
      4.4  可视分析学
      4.5  常用统计图表
      4.6  数据可视化的发展趋势
      4.7  Python编程实践
      4.8  继续学习本章知识
      习题
    第5章  数据加工
      5.1  数据科学与数据加工
      5.2  探索性数据分析
      5.3  数据大小及标准化
      5.4  缺失数据及其处理方法
      5.5  噪声数据及其处理方法
        5.5.1  离群点处理
        5.5.2  分箱处理
      5.6  数据维度及其降维处理方法
        5.6.1  特征选择
        5.6.2  主成分分析
      5.7  数据脱敏及其处理方法
      5.8  数据形态及其规整化方法
      5.9  Python编程实践
      5.10  继续学习本章知识
      习题
    第6章  大数据技术
      6.1  数据科学与大数据技术
      6.2  Hadoop生态系统
      6.3  大数据计算技术与Spark
        6.3.1  大数据计算与Lambda架构
        6.3.2  Spark的出现及其特点
        6.3.3  Spark的计算流程
        6.3.4  Spark的关键技术
      6.4  大数据管理技术与MongoDB
        6.4.1  关系数据库及其优缺点
        6.4.2  NoSQL及其数据模型
        6.4.3  CAP理论与BASE原则
        6.4.4  分片技术与复制技术
        6.4.5  MongoDB
      6.5  大数据分析技术
        6.5.1  Analytics 3.0
        6.5.2  Gartner分析学价值扶梯模型
        6.5.3  数据分析中的陷阱
      6.6  Python编程实践
      6.7  继续学习本章知识
      习题
    第7章  数据产品开发及数据科学中的人文与管理
      7.1  数据产品开发及数据科学的人文与管理属性
      7.2  数据产品及开发
      7.3  数据科学的项目管理
        7.3.1  数据科学项目中的主要角色
        7.3.2  数据科学项目中的主要活动

      7.4  数据能力
        7.4.1  关键过程域
        7.4.2  成熟度等级
        7.4.3  成熟度评价
      7.5  数据治理
        7.5.1  主要内容
        7.5.2  基本过程
        7.5.3  参考框架
      7.6  数据安全
        7.6.1  信息系统安全等级保护
        7.6.2  P2DR模型
      7.7  数据偏见
        7.7.1  数据来源选择偏见
        7.7.2  数据加工和准备偏见
        7.7.3  算法与模型选择偏见
        7.7.4  分析结果的解读和呈现上的偏见
      7.8  数据伦理与道德
      7.9  继续学习本章知识
      习题
    术语索引
    参考文献