-
内容大纲
本书使用有效的工具解决网络安全领域中存在的重要问题,并为网络安全专业人员提供机器学习算法的相关知识,旨在弥合网络安全和机器学习之间的知识鸿沟,专注于构建更有效的新解决方案,以取代传统的网络安全机制,并提供一系列算法,使系统拥有自动化功能。
本书介绍了网络攻击的主要阶段,如何为现有的网络安全产品实施智能解决方案,以及如何有效地实施面向未来的智能解决方案。本书研究机器学习理论在实际安全场景中的应用,每章均有专注于使用机器学习算法(如聚类、k-means、线性回归和朴素贝叶斯)解决现实问题的独立示例。 -
作者介绍
-
目录
前言
作者简介
审校者简介
第1章 网络安全中机器学习的基础知识
1.1 什么是机器学习
1.1.1 机器学习要解决的问题
1.1.2 为什么在网络安全中使用机器学习
1.1.3 目前的网络安全解决方案
1.1.4 机器学习中的数据
1.1.5 不同类型的机器学习算法
1.1.6 机器学习中的算法
1.1.7 机器学习架构
1.1.8 机器学习实践
1.2 总结
第2章 时间序列分析和集成建模
2.1 什么是时间序列
2.2 时间序列模型的类型
2.2.1 随机时间序列模型
2.2.2 人工神经网络时间序列模型
2.2.3 支持向量时间序列模型
2.2.4 时间序列组件
2.3 时间序列分解
2.3.1 级别
2.3.2 趋势
2.3.3 季节性
2.3.4 噪声
2.4 时间序列用例
2.4.1 信号处理
2.4.2 股市预测
2.4.3 天气预报
2.4.4 侦察检测
2.5 网络安全中的时间序列分析
2.6 时间序列趋势和季节性峰值
2.6.1 用时间序列检测分布式拒绝服务
2.6.2 处理时间序列中的时间元素
2.6.3 解决用例问题
2.6.4 导入包
2.6.5 特征计算
2.7 预测DDoS攻击
2.7.1 ARMA
2.7.2 ARIMA
2.7.3 ARFIMA
2.8 集成学习方法
2.8.1 集成学习的类型
2.8.2 集成算法的类型
2.8.3 集成技术在网络安全中的应用
2.9 用投票集成方法检测网络攻击
2.10 总结
第3章 鉴别合法和恶意的URL
3.1 URL中的异常类型介绍
3.2 使用启发式方法检测恶意网页
3.2.1 分析数据
3.2.2 特征提取
3.3 使用机器学习方法检测恶意URL
3.3.1 用于检测恶意URL的逻辑回归
3.3.2 用于检测恶意URL的支持向量机
3.3.3 用于URL分类的多类别分类
3.4 总结
第4章 破解验证码
4.1 验证码的特点
4.2 使用人工智能破解验证码
4.2.1 验证码的类型
4.2.2 reCAPTCHA
4.2.3 破解验证码
4.2.4 用神经网络破解验证码
4.2.5 代码
4.3 总结
第5章 使用数据科学捕获电子邮件诈骗和垃圾邮件
5.1 电子邮件诈骗
5.1.1 虚假售卖
5.1.2 请求帮助
5.1.3 垃圾邮件的类型
5.2 垃圾邮件检测
5.2.1 邮件服务器类型
5.2.2 邮件服务器的数据采集
5.2.3 使用朴素贝叶斯定理检测垃圾邮件
5.2.4 拉普拉斯平滑处理
5.2.5 将基于文本的邮件转换为数值的特征化技术
5.2.6 逻辑回归垃圾邮件过滤器
5.3 总结
第6章 使用k-means算法进行高效的网络异常检测
6.1 网络攻击的阶段
6.1.1 第1阶段:侦察
6.1.2 第2阶段:初始攻击
6.1.3 第3阶段:命令和控制
6.1.4 第4阶段:内网漫游
6.1.5 第5阶段:目标获得
6.1.6 第6阶段:渗透、侵蚀和干扰
6.2 应对网络中的内网漫游
6.3 使用Windows事件日志检测网络异常
6.3.1 登录/注销事件
6.3.2 账户登录事件
6.3.3 对象访问事件
6.3.4 账户管理事件
6.5 数据解析
6.6 建模
6.7 用k-means算法检测网络中的异常
6.8 总结
第7章 决策树和基于上下文的恶意事件检测
7.1 恶意软件
7.1.1 广告软件
7.1.2 机器人
7.1.3 软件错误
7.1.4 勒索软件
7.1.5 rootkit
7.1.6 间谍软件
7.1.7 特洛伊木马
7.1.8 病毒
7.1.9 蠕虫
7.2 恶意注入
7.2.1 数据库中的恶意数据注入
7.2.2 无线传感器中的恶意注入
7.2.3 用例
7.3 使用决策树检测恶意URL
7.4 总结
第8章 抓住伪装者和黑客
8.1 理解伪装
8.2 伪装欺诈的不同类型
8.2.1 伪装者收集信息
8.2.2 构建伪装攻击
8.3 莱文斯坦距离
8.3.1 检查恶意URL间的域名相似性
8.3.2 作者归属
8.3.3 测试数据集和验证数据集之间的差异
8.3.4 用于多项式模型的朴素贝叶斯分类器
8.3.5 入侵检测方法:伪装识别
8.4 总结
第9章 用TensorFlow实现入侵检测
9.1 TensorFlow简介
9.2 TensorFlow安装
9.3 适合Windows用户的TensorFlow
9.4 用TensorFlow实现“Hello World”
9.5 导入MNIST数据集
9.6 计算图
9.7 张量处理单元
9.8 使用TensorFlow进行入侵检测
9.9 总结
第10章 深度学习如何减少金融诈骗
10.1 利用机器学习检测金融诈骗
10.1.1 非均衡数据
10.1.2 处理非均衡数据集
10.1.3 检测信用卡诈骗
10.2 逻辑回归分类器:欠采样数据
10.2.1 超参数调整
10.2.2 逻辑回归分类器——偏斜数据
10.2.3 研究精确率-召回率曲线和曲线下面积
10.3 深度学习时间
10.4 总结
第11章 案例研究
11.1 我们的密码数据集简介
11.1.1 文本特征提取
11.1.2 使用scikit-learn进行特征提取
11.1.3 使用余弦相似度量化弱密码
11.1.4 组合
11.2 总结
同类热销排行榜
- C语言与程序设计教程(高等学校计算机类十二五规划教材)16
- 电机与拖动基础(教育部高等学校自动化专业教学指导分委员会规划工程应用型自动化专业系列教材)13.48
- 传感器与检测技术(第2版高职高专电子信息类系列教材)13.6
- ASP.NET项目开发实战(高职高专计算机项目任务驱动模式教材)15.2
- Access数据库实用教程(第2版十二五职业教育国家规划教材)14.72
- 信号与系统(第3版下普通高等教育九五国家级重点教材)15.08
- 电气控制与PLC(普通高等教育十二五电气信息类规划教材)17.2
- 数字电子技术基础(第2版)17.36
- VB程序设计及应用(第3版十二五职业教育国家规划教材)14.32
- Java Web从入门到精通(附光盘)/软件开发视频大讲堂27.92
推荐书目
-

孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...
-

时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...
-

本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...
[
