欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • fastai与PyTorch深度学习实践指南(影印版)(英文版)
      • 作者:(美)杰瑞米·霍华德//(法)西尔万·古戈尔|责编:张烨
      • 出版社:东南大学
      • ISBN:9787564194543
      • 出版日期:2021/04/01
      • 页数:594
    • 售价:67.6
  • 内容大纲

        深度学习往往被视为数学博士和大型科技公司的专属领域。但正如这本实践指南所展示的那样,熟练使用Python的程序员只需很少的数学背景、少量的数据和最少的代码,就可以在深度学习方面取得令人印象深刻的成果。怎么样才能做到?使用fastai,这是首个为最常用的深度学习应用提供一致接口的库。
        本书作者Jeremy Howard和Sylvain Gugger是fastai的创建者,他们向你展示了如何使用fastai和PyTorch在各种任务上训练一个模型。你还将逐步深入了解深度学习理论,以便充分理解幕后的算法。
        在计算机视觉、自然语言处理、表格型数据和协同过滤中训练模型;
        学习在实践中至关重要的最新深度学习技术;
        通过了解深度学习模型的工作原理,提高准确性、速度和可靠性;
        了解如何将你的模型转化为Web应用;
        从头开始实现深度学习算法;
        考虑你的工作所带来的道德影响;
        从PyTorch联合创始人Soumith Chintala的前言中获得启示。
  • 作者介绍

  • 目录

    Preface
    Foreword
    Part I. Deep Learning in Practice
      1. Your Deep Learning Journey
        Deep Learning Is for Everyone
        Neural Networks: A Brief History
        Who We Are
        How to Learn Deep Learning
          Your Projects and Your Mindset
        The Software: PyTorch, fastai, and Jupyter (And Why It Doesn't Matter)
        Your First Model
          Getting a GPU Deep Learning Server
          Running Your First Notebook
          What Is Machine Learning?
          What Is a Neural Network?
          A Bit of Deep Learning Jargon
          Limitations Inherent to Machine Learning
          How Our Image Recognizer Works
          What Our Image Recognizer Learned
          Image Recognizers Can Tackle Non-Image Tasks
          Jargon Recap
        Deep Learning Is Not Just for Image Classification
        Validation Sets and Test Sets
        Use Judgment in Defining Test Sets
        A Choose Your Own Adventure Moment
        Questionnaire
          Further Research
      2. From Model to Production
        The Practice of Deep Learning
          Starting Your Project
          The State of Deep Learning
          The Drivetrain Approach
        Gathering Data
        From Data to DataLoaders
          Data Augmentation
        Training Your Model, and Using It to Clean Your Data
        Turning Your Model into an Online Application
          Using the Model for Inference
          Creating a Notebook App from the Model
          Turning Your Notebook into a Real App
          Deploying Your App
        How to Avoid Disaster
          Unforeseen Consequences and Feedback Loops
        Get Writing!
        Questionnaire
          Further Research
      3. Data Ethics
        Key Examples for Data Ethics
          Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits
          Feedback Loops: YouTube's Recommendation System

          Bias: Professor Latanya Sweeney "Arrested"
          Why Does This Matter?
        Integrating Machine Learning with Product Design
        Topics in Data Ethics
          Recourse and Accountability
          Feedback Loops
          Bias
          Disinformation
        Identifying and Addressing Ethical Issues
          Analyze a Project You Are Working On
          Processes to Implement
          The Power of Diversity
      ……
    Part II. Understanding fastai's applications
    Part III. Foundations of Deep Learning
    Part IV. Deep learning from Scratch
    Index