濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌熼梻瀵割槮缁惧墽绮换娑㈠箣閻戝棛鍔┑鐐村灦閻燂箓宕曢悢鍏肩厪濠电偛鐏濋崝姘舵煟鎼搭喖寮慨濠冩そ瀹曟鎳栭埞鍨沪闂備礁鎼幊蹇曞垝瀹€鍕仼闁绘垼妫勯拑鐔兼煏婢舵稓鐣遍柍褜鍓涢弫濠氬蓟閵娿儮鏀介柛鈩冧緱閳ь剚顨婇弻锛勨偓锝庡亞閵嗘帞绱掓潏銊ユ诞闁糕斁鍋撳銈嗗笒鐎氼剛澹曢崗鍏煎弿婵☆垰鐏濇禍褰掓煕閻愬灚鏆柡宀嬬秮閹晠鎮滃Ο绯曞亾閸愵喗鍋i柍褜鍓熼弫鍐焵椤掆偓瀹撳嫰姊洪崨濠勨槈閺嬵亜霉濠婂嫮鐭掗柡灞诲姂瀵潙螖閳ь剚绂嶆ィ鍐╁€垫繛鍫濈仢閺嬫稑顭胯闁帮綁鐛幋锕€顫呴柣姗嗗亝閺傗偓闂佽鍑界紞鍡樼鐠烘í缂氬┑鐘叉处閳锋垹绱撴担鍏夋(妞ゅ繐瀚烽崵鏇㈡偣閾忚纾柟鐑橆殔缁犳盯鏌eΔ鈧悧鍐箯濞差亝鈷掗柛灞炬皑婢ф稓绱掔€n偄娴鐐寸墵楠炲洭顢橀悩娈垮晭闁诲海鎳撴竟濠囧窗閺嶎厾宓侀柡宥庡幗閻撶喖鏌ㄥ┑鍡樺櫣婵¤尙绮妵鍕敃閿濆洨鐣奸梺鍦嚀鐎氫即骞栬ぐ鎺撳仭闁哄娉曢鍥⒒閸屾艾鈧娆㈠璺虹劦妞ゆ帒鍊告禒婊堟煠濞茶鐏¢柡鍛板煐鐎佃偐鈧稒岣块崢鐐繆閵堝繒鐣虫繛澶嬫礈閼洪亶宕稿Δ浣哄帾闂佹悶鍎崝灞炬叏瀹ュ棭娈介柣鎰綑濞搭喗顨ラ悙宸剶闁诡喗绮撳畷鍗烆潨閸℃﹫绱欓梻鍌氬€搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇氱秴闁搞儺鍓﹂弫宥夋煟閹邦厽缍戦柍褜鍓濋崺鏍崲濠靛顥堟繛鎴炶壘椤e搫顪冮妶鍐ㄥ姕鐎光偓閹间礁钃熸繛鎴旀噰閳ь剨绠撻獮瀣攽閸モ晙绨┑鐘殿暯閸撴繆銇愰崘顔藉亱闁规崘顕ч拑鐔兼煥閻斿搫孝缂佲偓閸愵喗鐓冮柛婵嗗閳ь剚鎮傚鍐参旈崨顔规嫼婵炴潙鍚嬮悷褏绮旈鈧湁婵犲﹤楠告晶鐗堜繆閸欏濮嶆鐐村笒铻栭柍褜鍓氶崕顐︽煟閻斿摜鐭婇梺甯到椤曪綁骞庨挊澶屽幐闂佸憡鍔︽禍鐐烘晬濠婂牊鐓涘璺猴功婢ф垿鏌涢弬璺ㄐч挊鐔兼煕椤愮姴鍔滈柣鎾寸☉闇夐柨婵嗙墱濞兼劗鈧娲栭惌鍌炲蓟閳╁啯濯撮悷娆忓绾炬娊姊烘潪鎵妽闁圭懓娲顐﹀箻缂佹ɑ娅㈤梺璺ㄥ櫐閹凤拷 [闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ帊绀侀崜顓烆渻閵堝棗濮х紒鐘冲灴閻涱噣濮€閵堝棛鍘撻柡澶屽仦婢瑰棝宕濆鍡愪簻闁哄倸鐏濋顐ょ磼鏉堛劍宕岀€规洘甯掗~婵嬵敄閽樺澹曢梺鍛婄缚閸庢娊鎯屽▎鎾寸厱闁哄洢鍔岄悘鐘电磼閻欌偓閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟� | 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵姘ㄧ槐鎾诲磼濞嗘帒鍘$紓渚囧櫘閸ㄨ泛鐣峰┑鍠棃宕橀妸銉т喊闂備礁鎼崯顐︽偋婵犲洤纾瑰┑鐘崇閻撱垺淇婇娆掝劅婵″弶鎮傞弻锝嗘償椤旂厧绫嶅┑顔硷龚濞咃絿鍒掑▎鎾崇閹兼番鍨虹€氭娊姊绘担铏广€婇柡鍛洴瀹曨垶寮堕幋顓炴闂佸綊妫跨粈渚€宕橀埀顒€顪冮妶鍡樺暗闁哥姵鎹囧畷銏ゎ敂閸涱垳鐦堥梺姹囧灲濞佳勭濠婂牊鐓熼煫鍥ㄦ⒒缁犵偟鈧娲樼换鍌烇綖濠靛鍤嬮柣銏ゆ涧楠炴劙姊绘担鍛靛綊寮甸鍕┾偓鍐川椤旂虎娲搁梺璺ㄥ櫐閹凤拷]

    • 迁移学习导论(人工智能探索与实践)
      • 作者:王晋东//陈益强|责编:牛勇
      • 出版社:电子工业
      • ISBN:9787121410895
      • 出版日期:2021/06/01
      • 页数:280
    • 售价:43.6
  • 内容大纲

        迁移学习作为机器学习和人工智能领域的重要方法,在计算机视觉、自然语言处理、语音识别等领域都得到了广泛的应用。本书的编写目的是帮助迁移学习及机器学习相关领域的初学者快速入门。全书主要分为背景与概念、方法与技术、扩展与探索及应用与展望四大部分。除此之外,本书还配有相关的代码、数据和论文资料,最大限度地降低初学者的学习和使用门槛。
        本书适合对迁移学习感兴趣的读者阅读,也可以作为相关课程的配套教材。
  • 作者介绍

  • 目录

    第一部分  背景与概念
      第1章  绪论
        1.1  迁移学习
        1.2  相关研究领域
        1.3  迁移学习的必要性
          1.3.1  大数据与少标注之间的矛盾
          1.3.2  大数据与弱计算能力的矛盾
          1.3.3  有限数据与模型泛化能力的矛盾
          1.3.4  普适化模型与个性化需求的矛盾
          1.3.5  特定应用的需求
        1.4  迁移学习的研究领域
          1.4.1  按特征空间分类
          1.4.2  按目标域有无标签分类
          1.4.3  按学习方法分类
          1.4.4  按离线与在线形式分类
        1.5  迁移学习的应用
          1.5.1  计算机视觉
          1.5.2  自然语言处理
          1.5.3  普适计算与人机交互
          1.5.4  医疗健康
        1.6  学术会议和工业界中的迁移学习
      第2章  从机器学习到迁移学习
        2.1  机器学习及基本概念
        2.2  结构风险最小化
        2.3  数据的概率分布
        2.4  概念与符号
        2.5  迁移学习的问题定义
      第3章  迁移学习基本问题
        3.1  何处迁移
        3.2  何时迁移
        3.3  如何迁移
        3.4  失败的迁移:负迁移
        3.5  完整的迁移学习过程
    第二部分  方法与技术
      第4章  迁移学习方法总览
        4.1  迁移学习总体思路
        4.2  分布差异的度量
          4.2.1  百花齐放的迁移学习分布度量
          4.2.2  分布差异的统一表征
          4.2.3  分布自适应因子的计算
        4.3  迁移学习统一表征
          4.3.1  样本权重迁移法
          4.3.2  特征变换迁移法
          4.3.3  模型预训练迁移法
          4.3.4  小结
        4.4  上手实践
          4.4.1  数据准备
      ……
    第三部分  扩展与探索
    第四部分  应用与展望

    参考文献