欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 气动声学基础及其在航空推进系统中的应用(英文版国际版)(精)/大飞机出版工程
      • 作者:孙晓峰//王晓宇|责编:江璇//刘宇轩|总主编:顾诵芬
      • 出版社:上海交大
      • ISBN:9787313241412
      • 出版日期:2021/11/01
      • 页数:581
    • 售价:115.2
  • 内容大纲

        气动声学既是一门流体与声学交叉的基础技术学科,又是一门紧密结合航空飞行器及其推进系统研发设计的应用学科,有着显著的工程应用背景。因此,如何将复杂的飞行动力系统中声音的产生、传播和辐射凝练成基础科学问题,并从中获得物理机制的理解和认识,是本书主要的写作目的。本书按照气动声学作为基础学科的发展过程为背景,结合航空推进器关键气动声学问题,构建了从基础研究到工程应用快速预测方法的知识体系,其中包括气动声学的基本定律、快速计算模型、不同类型的流体与物面边界干涉等发声问题的物理建模、并结合发动机主要噪声部件阐明了声音的来源和传播特性。
        本书可以作为气动声学课程讲义,也可以作为具有基础流体力学和声学基础知识的研究生自学材料,更可以成为参与型号研制的航空工程师学习调研的重要参考资料。
  • 作者介绍

  • 目录

    CHAPTER 1 Basic equations of aeroacoustics
      1.1  Sound sources in moving media
        1.1.1  Basic equations o f sound propagation
        1.1.2  Energy relations in moving media
        1.1.3  Sound field ofmoving sound sources
        1.1.4  Frequency features of moving sound sourcc Dopplcr effect
      1.2  Generalized Green’s formula
      1.3  Lighthill equation
        1.3.1  Derivation of basic equations
        1.3.2  Effect of solid boundary on sound generation
      1.4  Ffowcs Williams.Hawkings equation
      1.5  Generalized Lighthill’s equation
        References
    CHAPTER 2 Propeller noise:Prediction and control
      2.1  Noise sources of propeller
        2.1.1  An overvicw,the developing history of propeller noise
        prediction
        2.1.2  Advanced propeller noise(Propfan noisc)
      2.2  Propeller noise prediction in frequency—domain
        2.2.1  The basic equations
        2.2.2  Aerodynamic performance prediction
        2.2.3  The near-field solution of propeller noise
        2.2.4  The far-field solution of propeller noise
      2.3  Propeller noise prediction in time—domain
        2.3.1  The basic equations
        2.3.2  The solution o f the free-space generalized wave equation
        2.3.3  The fundamental integral formulas o f the sur face source in time-domain
        2.3.4  The integral expressions of the sound field due to
        monopoles and dipoles
        2.3.5  Introduction to numerical computation methods
        References
    CHAPTER 3 Noise prediction in aeroengine
      3.1  Noise sources in aeroengine
      3.2  Tone noise by rotor/stator interaction in fan compressor
        3.2.1  Introduction
        3.2.2  Model of sound generation by unstcady aerodynamic load on blade
        3.2.3  Prediction for tone noise by rotor/stator interaction
      3.3  Shockwave noise in fan/compressor
        3.3.1  Physical mechanism of shockwave noise in fan
        compressor
        3.3.2  Shockwave noise prediction method
        3.3.3  Power computation of shockwave noise
      3.4  Combustion noise
      3.5  Jet noise
        3.5.1  Solution of Lighthill’S equation
        3.5.2  Prediction ofjet noise
        3.5.3  Effect of non-uniform flow Lilley’s equation
        References
    CHAPTER 4 Linearized unsteady aerodynamics for aeroacoustic applications
      4.1  IntrOductiOn

      4.2  Basic linearized unsteady aerodynamic equations
        4.2.1  Velocity decomposing theorem for uniform flows
        4.2.2  Disturbance velocity decomposition in non-uni form flow
        fields:Goldstein’S equation
      4.3  Unsteady loading for two—dimensional supersonic cascades with
        subsonic leading—edge locus
        4.3.1  Physical and mathematical models
        4.3.2  Discussion concerning the convergence of thc kernel
        function
        4.3.3  Reflection coefficients of Mach waves and the solution of
        the integral equation
        4.3.4  Comparison o f numerical solutions for unsteady blade
        loading
      4.4  Lifting surface theory for unsteady analysis of fan/compressor
        cascade
        4.4.1  A unifled framework for acoustic field and unsteady flow
        4.4.2  Integral equation for the solution of unsteady blade load
        4.4.3  Upwash velocity for three di fferent incoming conditions
        4.4.4  Solution to the integral equation
        4.4.5  Numerical validation of unsteady blade loading
        References
    CHAPTER 5 Vortex sound theory
      5.1  Introduction tO sound generation induced by vortex flow
      5.2  Basic equations of vortex sound
        5.2.1  Powell’S equation
        5.2.2  Howe’S acoustic analogy
        5.2.3  The equivalence of Curie’s equation and Howe’s equation
      5.3  Vortex sound model of trailing edge noise
      5.4  Vortex sound model of liner impedance
      5.5  Effect of grazing flow on vortex-sound interaction of
        perforated plates
        5.5.1  Effect of grazing flow on the acoustic impedance of
        perforated plates
        5.5.2  Effect of plate thickness on impedance of perforated
        plates with bias flow
      5.6  Nonlinear model of vortex.sound interaction
        5.6.1  The nonlinear  model  of vortex sound  intcraction
        occurring at a slit
        5.6.2  Flow-excited acoustic resonance of a Helmholtz resonator
        References
    CHAPTER 6  Sound generation.propagation.and radiation infrom an
        aeroengine nacelle
      6.1  IntroductiOn
      6.2  Basic theory of sound propagation in ducts
      6.3  Computational approaches for duct acoustics
        6.3.1  Sound propagation in an aeroengine nacelle
        6.3.2  Fundamental idea of the trans.fer element method
        6.3.3  Construction of transfer element for a locally reacting
        lined duct
        6.3.4  Construction of transfer element for a nonlocally reacting

        lined duct
        6.3.5  Construction of transfer element for a varying cross
        section duct
        6.3.6  ralrlalation of the combjned acoustjC Lner
      6.4  Fan noise source modeling
        6.4.1  Tonal/broadband interaction noise prediction
        6.4.2  The passive control effect of vane sweep and lean
        6.4.3  Sound SOUrCe prediction model for a finite region
      6.5  Interaction effect
        6.5.1  The interaction between rotor and Stator cascades
        6.5.2  The interaction between source and liner
        6.5.3  Far-field sound radiation of an aeroenginc nacelle
        References
    CHAPTER 7 Thermoacoustic instability
      7.1  Basic concepts of thermoacoustics
      7.2  One—dimensional calculation method
      7.3  Three.dimensional linear analysis method for combustion
        instability
        7.3.1  Analytical approach
        7.3.2  Numerical calculation method
        7.3.3  Effect of vorticity waves on azimuthal instabilities in
        annular chambers
      7.4  Control of thermoacoustic instability in a Rijke tube
        7.4.1  Perforated liner with bias flow
        7.4.2  Drum-like silencer
        Appendix
        References
    CHAPTER 8 Impedance eduction for acoustic liners
      8.1  Introduction
      8.2  Straight forward method of acoustic impedance eduction
        8.2.1  Model description
        8.2.2  Sound field in thc flow duct
        8.2.3  Mode decomposition by using Prony’s method
        8.2.4  Impedance eduction
        8.2.5  Model validation
      8.3  Shear flow effect on the impedance eduction
        8.3.1  Model description
        8.3.2  Sound field in the flow duct
        8.3.3  Mode decomposition
        8.3.4  Impedance eduction
        8.3.5  Impedance eduction example in the presence o f shear f1ow
      8.4  Straightforward method of acoustic impedance eduction
        8.4.1  Model description
        8.4.2  Sound field in the flow duct
        8.4.3  Spanwise mode decomposition
        8.4.4  Vertical mode decomposition
        8.4.5  Impedance eduction
        8.4.6  Multisolution problem
        8.4.7  Impedance eduction example beyond the cut-off
    frequency

    References
    Index

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>