-
内容大纲
气动声学既是一门流体与声学交叉的基础技术学科,又是一门紧密结合航空飞行器及其推进系统研发设计的应用学科,有着显著的工程应用背景。因此,如何将复杂的飞行动力系统中声音的产生、传播和辐射凝练成基础科学问题,并从中获得物理机制的理解和认识,是本书主要的写作目的。本书按照气动声学作为基础学科的发展过程为背景,结合航空推进器关键气动声学问题,构建了从基础研究到工程应用快速预测方法的知识体系,其中包括气动声学的基本定律、快速计算模型、不同类型的流体与物面边界干涉等发声问题的物理建模、并结合发动机主要噪声部件阐明了声音的来源和传播特性。
本书可以作为气动声学课程讲义,也可以作为具有基础流体力学和声学基础知识的研究生自学材料,更可以成为参与型号研制的航空工程师学习调研的重要参考资料。 -
作者介绍
-
目录
CHAPTER 1 Basic equations of aeroacoustics
1.1 Sound sources in moving media
1.1.1 Basic equations o f sound propagation
1.1.2 Energy relations in moving media
1.1.3 Sound field ofmoving sound sources
1.1.4 Frequency features of moving sound sourcc Dopplcr effect
1.2 Generalized Green’s formula
1.3 Lighthill equation
1.3.1 Derivation of basic equations
1.3.2 Effect of solid boundary on sound generation
1.4 Ffowcs Williams.Hawkings equation
1.5 Generalized Lighthill’s equation
References
CHAPTER 2 Propeller noise:Prediction and control
2.1 Noise sources of propeller
2.1.1 An overvicw,the developing history of propeller noise
prediction
2.1.2 Advanced propeller noise(Propfan noisc)
2.2 Propeller noise prediction in frequency—domain
2.2.1 The basic equations
2.2.2 Aerodynamic performance prediction
2.2.3 The near-field solution of propeller noise
2.2.4 The far-field solution of propeller noise
2.3 Propeller noise prediction in time—domain
2.3.1 The basic equations
2.3.2 The solution o f the free-space generalized wave equation
2.3.3 The fundamental integral formulas o f the sur face source in time-domain
2.3.4 The integral expressions of the sound field due to
monopoles and dipoles
2.3.5 Introduction to numerical computation methods
References
CHAPTER 3 Noise prediction in aeroengine
3.1 Noise sources in aeroengine
3.2 Tone noise by rotor/stator interaction in fan compressor
3.2.1 Introduction
3.2.2 Model of sound generation by unstcady aerodynamic load on blade
3.2.3 Prediction for tone noise by rotor/stator interaction
3.3 Shockwave noise in fan/compressor
3.3.1 Physical mechanism of shockwave noise in fan
compressor
3.3.2 Shockwave noise prediction method
3.3.3 Power computation of shockwave noise
3.4 Combustion noise
3.5 Jet noise
3.5.1 Solution of Lighthill’S equation
3.5.2 Prediction ofjet noise
3.5.3 Effect of non-uniform flow Lilley’s equation
References
CHAPTER 4 Linearized unsteady aerodynamics for aeroacoustic applications
4.1 IntrOductiOn
4.2 Basic linearized unsteady aerodynamic equations
4.2.1 Velocity decomposing theorem for uniform flows
4.2.2 Disturbance velocity decomposition in non-uni form flow
fields:Goldstein’S equation
4.3 Unsteady loading for two—dimensional supersonic cascades with
subsonic leading—edge locus
4.3.1 Physical and mathematical models
4.3.2 Discussion concerning the convergence of thc kernel
function
4.3.3 Reflection coefficients of Mach waves and the solution of
the integral equation
4.3.4 Comparison o f numerical solutions for unsteady blade
loading
4.4 Lifting surface theory for unsteady analysis of fan/compressor
cascade
4.4.1 A unifled framework for acoustic field and unsteady flow
4.4.2 Integral equation for the solution of unsteady blade load
4.4.3 Upwash velocity for three di fferent incoming conditions
4.4.4 Solution to the integral equation
4.4.5 Numerical validation of unsteady blade loading
References
CHAPTER 5 Vortex sound theory
5.1 Introduction tO sound generation induced by vortex flow
5.2 Basic equations of vortex sound
5.2.1 Powell’S equation
5.2.2 Howe’S acoustic analogy
5.2.3 The equivalence of Curie’s equation and Howe’s equation
5.3 Vortex sound model of trailing edge noise
5.4 Vortex sound model of liner impedance
5.5 Effect of grazing flow on vortex-sound interaction of
perforated plates
5.5.1 Effect of grazing flow on the acoustic impedance of
perforated plates
5.5.2 Effect of plate thickness on impedance of perforated
plates with bias flow
5.6 Nonlinear model of vortex.sound interaction
5.6.1 The nonlinear model of vortex sound intcraction
occurring at a slit
5.6.2 Flow-excited acoustic resonance of a Helmholtz resonator
References
CHAPTER 6 Sound generation.propagation.and radiation infrom an
aeroengine nacelle
6.1 IntroductiOn
6.2 Basic theory of sound propagation in ducts
6.3 Computational approaches for duct acoustics
6.3.1 Sound propagation in an aeroengine nacelle
6.3.2 Fundamental idea of the trans.fer element method
6.3.3 Construction of transfer element for a locally reacting
lined duct
6.3.4 Construction of transfer element for a nonlocally reacting
lined duct
6.3.5 Construction of transfer element for a varying cross
section duct
6.3.6 ralrlalation of the combjned acoustjC Lner
6.4 Fan noise source modeling
6.4.1 Tonal/broadband interaction noise prediction
6.4.2 The passive control effect of vane sweep and lean
6.4.3 Sound SOUrCe prediction model for a finite region
6.5 Interaction effect
6.5.1 The interaction between rotor and Stator cascades
6.5.2 The interaction between source and liner
6.5.3 Far-field sound radiation of an aeroenginc nacelle
References
CHAPTER 7 Thermoacoustic instability
7.1 Basic concepts of thermoacoustics
7.2 One—dimensional calculation method
7.3 Three.dimensional linear analysis method for combustion
instability
7.3.1 Analytical approach
7.3.2 Numerical calculation method
7.3.3 Effect of vorticity waves on azimuthal instabilities in
annular chambers
7.4 Control of thermoacoustic instability in a Rijke tube
7.4.1 Perforated liner with bias flow
7.4.2 Drum-like silencer
Appendix
References
CHAPTER 8 Impedance eduction for acoustic liners
8.1 Introduction
8.2 Straight forward method of acoustic impedance eduction
8.2.1 Model description
8.2.2 Sound field in thc flow duct
8.2.3 Mode decomposition by using Prony’s method
8.2.4 Impedance eduction
8.2.5 Model validation
8.3 Shear flow effect on the impedance eduction
8.3.1 Model description
8.3.2 Sound field in the flow duct
8.3.3 Mode decomposition
8.3.4 Impedance eduction
8.3.5 Impedance eduction example in the presence o f shear f1ow
8.4 Straightforward method of acoustic impedance eduction
8.4.1 Model description
8.4.2 Sound field in the flow duct
8.4.3 Spanwise mode decomposition
8.4.4 Vertical mode decomposition
8.4.5 Impedance eduction
8.4.6 Multisolution problem
8.4.7 Impedance eduction example beyond the cut-off
frequency
References
Index
同类热销排行榜
- 故宫日历(公历2017年)(精)26.4
- 时间简史(插图版)18
- 工程数学线性代数(第6版十二五普通高等教育本科国家级规划教材)7.76
- 昆虫记(精)/经典译林8.72
- 数控铣床综合实训教程19.2
- 昆虫记(插图典藏本)(精)11.2
- 化工制图习题集(普通高等教育规划教材)7.2
- 化工制图(普通高等教育规划教材)15.8
- 生命急救技能14
- 时间简史(普及版)(精)15.2
推荐书目
-
孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...
-
时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...
-
本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...