欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 信道编码(经典和现代方法英文版香农信息科学经典)
      • 作者:(美)威廉·瑞安//林舒|责编:陈亮
      • 出版社:世图出版公司
      • ISBN:9787519285098
      • 出版日期:2022/06/01
      • 页数:692
    • 售价:63.6
  • 内容大纲

        信道编码是数字通信和数据存储的核心,本书详细介绍了信道编码的核心理论以及解码算法、实现方法和性能分析。两位作者以其清晰的文字,为读者提供现代信道代码的最新信息,包括Turbo码和低密度奇偶校验(LDPC)码。书中还介绍了BCH码、Reed—Solomon码、卷积码、有限几何码和乘积码等的详细内容,为经典和现代编码技术提供了一站式资源。
        本书适合作为高等院校低年级研究生或高年级本科生编码理论课程的教材或参考书,也可供相关技术人员参考。
  • 作者介绍

  • 目录

    Preface
    1  Coding and Capacity
      1.1  Digital Data Communication and Storage
      1.2  Channel-Coding Overview
      1.3  Channel-Code Archetype: The (7,4) Hamming Code
      1.4  Design Criteria and Performance Measures
      1.5  Channel-Capacity Formulas for Common Channel Models
        1.5.1  Capacity for Binary-Input Memoryless Channels
        1.5.2  Coding Limits for M-ary-Input Memoryless Channels
        1.5.3  Coding Limits for Channels with Memory
      Problems
      References
    2  Finite Fields, Vector Spaces, Finite Geometries, and Graphs
      2.1  Sets and Binary Operations
      2.2  Groups
        2.2.1  Basic Concepts of Groups
        2.2.2  Finite Groups
        2.2.3  Subgroups and Cosets
      2.3  Fields
        2.3.1  Definitions and Basic Concepts
        2.3.2  Finite Fields
      2.4  Vector Spaces
        2.4.1  Basic Definitions and Properties
        2.4.2  Linear Independence and Dimension
        2.4.3  Finite Vector Spaces over Finite Fields
        2.4.4  Inner Products and Dual Spaces
      2.5  Polynomials over Finite Fields
      2.6  Construction and Properties of Galois Fields
        2.6.1  Construction of Galois Fields
        2.6.2  Some Fundamental Properties of Finite Fields
        2.6.3  Additive and Cyclic Subgroups
      2.7  Finite Geometries
        2.7.1  Euclidean Geometries
        2.7.2  Projective Geometries
      2.8  Graphs
        2.8.1  Basic Concepts
        2.8.2  Paths and Cycles
        2.8.3  Bipartite Graphs
      Problems
      References
      Appendix A
    3  Linear Block Codes
      3.1  Introduction to Linear Block Codes
        3.1.1  Generator and Parity-Check Matrices
        3.1.2  Error Detection with Linear Block Codes
        3.1.3  Weight Distribution and Minimum Hamming Distance of a Linear Block Code
        3.1.4  Decoding of Linear Block Codes
      3.2  Cyclic Codes
      3.3  BCH Codes
        3.3.1  Code Construction

        3.3.2  Decoding
      3.4  Nonbinary Linear Block Codes and Reed-Solomon Codes
      3.5  Product, Interleaved, and Concatenated Codes
        3.5.1  Product Codes
        3.5.2  Interleaved Codes
        3.5.3  Concatenated Codes
      3.6  Quasi-Cyclic Codes
      3.7  Repetition and Single-Parity-Check Codes
      Problems
      References
    4  Convolutional Codes
      4.1  The Convolutional Code Archetype
      4.2  Algebraic Description of Convolutional Codes
      4.3  Encoder Realizations and Classifications
        4.3.1  Choice of Encoder Class
        4.3.2  Catastrophic Encoders
        4.3.3  Minimal Encoders
        4.3.4  Design of Convolutional Codes
      4.4  Alternative Convolutional Code Representations
        4.4.1  Convolutional Codes as Semi-Infinite Linear Codes
        4.4.2  Graphical Representations for Convotutional Code Encoders
      ……
    5  Low-Density Parity-Check Codes
    6  Computer-Based Design of LDPC Codes
    7  Turbo Codes
    8  Ensemble Enumerators for Turbo and LDPC Codes
    9  Ensemble Decoding Thresholds for LDPC and Turbo Codes
    10  Finite-Geometry LDPC Codes
    11  Constructions of LDPC Codes Based on Finite Fields
    12  LDPC Codes Based on Combinatorial Designs, Graphs, and Superposition
    13  LDPC Codes for Binary Erasure Channels
    14  Nonbinary LDPC Codes
    15  LDPC Code Applications and Advanced Topics
    Index