-
内容大纲
《机器学习的算法观点》是一部介绍机器学习算法的书籍。本书在阐述与机器学习的数学和统计学理论的同时,提供了相关的编程实践和实验。第2版新增了深度信念网络和高斯过程的章节、卡尔曼滤波器和粒子滤波器的附加讨论,对支持向量机的内容进行修订,并且对代码进行改进。目录:前言、预先准备、神经元、神经网络和线性判别、多层感知器、径向基函数和样条、降维、概率学习、支持向量机、优化和搜索、进化学习、强化学习、特征树学习、集成学习、非监督学习、马尔科夫链蒙特卡洛方法、图模型、对称权值和深度置信网络、高斯过程。 -
作者介绍
-
目录
Prologue to 2nd Edition
Prologue to 1st Edition
CHAPTER 1 Introduction
1.1 IF DATA HAD MASS, THE EARTH WOULD BE A BLACK HOLE
1.2 LEARNING
1.2.1 Machine Learning
1.3 TYPES OF MACHINE LEARNING
1.4 SUPERVISED LEARNING
1.4.1 Regression
1.4.2 Classification
1.5 THE MACHINE LEARNING PROCESS
1.6 A NOTE ON PROGRAMMING
1.7 A ROADMAP TO THE BOOK
FURTHER READING
CHAPTER 2 Preliminaries
2.1 SOME TERMINOLOGY
2.1.1 Weight Space
2.1.2 The Curse of Dimensionality
2.2 KNOWING WHAT YOU KNOW: TESTING MACHINE LEARNING AL-GORITHMS
2.2.1 Overfitting
2.2.2 Training, Testing, and Validation Sets
2.2.3 The Confusion Matrix
2.2.4 Accuracy Metrics
2.2.5 The Receiver Operator Characteristic (ROC) Curve
2.2.6 Unbalanced Datasets
2.2.7 Measurement Precision
2.3 TURNING DATA INTO PROBABILITIES
2.3.1 Minimising Risk
2.3.2 The Naive Bayes' Classifier
2.4 SOME BASIC STATISTICS
2.4.1 Averages
2.4.2 Variance and Covariance
2.4.3 The Gaussian
2.5 THE BIAS-VARIANCE TRADEOFF
FURTHER READING
PRACTICE QUESTIONS
CHAPTER 3 Neurons, Neural Networks, and Linear Discriminants
3.1 THE BRAIN AND THE NEURON
3.1.1 Hebb's Rule
3.1.2 McCulloch and Pitts Neurons
3.1.3 Limitations of the McCulloch and Pitts Neuronal Model
3.2 NEURAL NETWORKS
3.3 THE PERCEPTRON
3.3.1 The Learning Rate 7/
3.3.2 The Bias Input
3.3.3 The Perceptron Learning Algorithm
3.3.4 An Example of Perceptron Learning: Logic Functions
3.3.5 Implementation
3.4 LINEAR SEPARABILITY
3.4.1 The Perceptron Convergence Theorem
3.4.2 The Exclusive Or (XOR) Function
3.4.3 A Useful Insight
3.4.4 Another Example: The Pima Indian Dataset
3.4.5 Preprocessing: Data Preparation
3.5 LINEAR REGRESSION
3.5.1 Linear Regression Examples
FURTHER READING
PRACTICE QUESTIONS
CHAPTER 4 The Multi-layer Perceptron
4.1 GOING FORWARDS
4.1.1 Biases
4.2 GOING BACKWARDS: BACK-PROPAGATION OF ERROR
4.2.1 The Multi-layer Perceptron Algorithm
4.2.2 Initialising the Weights
4.2.3 Different Output Activation Functions
CHAPTER 5 Radial Basis Functions and Splines
CHAPTER 6 Dimensionality Reduction
CHAPTER 7 Probabilistic Learning
CHAPTER 8 Support Vector Machines
CHAPTER 9 Optimisation and Search
CHAPTER 10 Evolutionary Learning
CHAPTER 11 Reinforcement Learning
CHAPTER 12 Learning with Trees
CHAPTER 13 Decision by Committee: Ensemble Learning
CHAPTER 14 Unsupervised Learning
CHAPTER 15 Markov Chain Monte Carlo (MCMC) Methods
CHAPTER 16 Graphical Models
CHAPTER 17 Symmetric Weights and Deed Belief Networks
CHAPTER 18 Gaussian Processes
APPENDIX A Python
Index
同类热销排行榜
- C语言与程序设计教程(高等学校计算机类十二五规划教材)16
- 电机与拖动基础(教育部高等学校自动化专业教学指导分委员会规划工程应用型自动化专业系列教材)13.48
- 传感器与检测技术(第2版高职高专电子信息类系列教材)13.6
- ASP.NET项目开发实战(高职高专计算机项目任务驱动模式教材)15.2
- Access数据库实用教程(第2版十二五职业教育国家规划教材)14.72
- 信号与系统(第3版下普通高等教育九五国家级重点教材)15.08
- 电气控制与PLC(普通高等教育十二五电气信息类规划教材)17.2
- 数字电子技术基础(第2版)17.36
- VB程序设计及应用(第3版十二五职业教育国家规划教材)14.32
- Java Web从入门到精通(附光盘)/软件开发视频大讲堂27.92
推荐书目
-

孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...
-

时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...
-

本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...
[
