欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 电力市场大数据分析(英文版)
      • 作者:陈启鑫
      • 出版社:科学
      • ISBN:9787030715166
      • 出版日期:2022/01/01
      • 页数:284
    • 售价:63.2
  • 内容大纲

        本书以电力市场领域近年来的研究工作成果为基础,力图系统性地介绍电力市场中的数据价值挖掘方法以支撑市场组织者和市场参与者的决策问题。本书围绕电力市场中的公开数据和机器学习方法理论与应用展开,结合电力市场规则和物理特征,期望解决市场规则解析和数据结构化两大核心难点,并从负荷与电价预测、报价行为解析、金融衍生品投机等方面,构建了电力市场数据分析理论和技术方法体系。
        全书共13章,第1章介绍了世界各地的电力市场数据概况。除第1章外,剩余内容分为三部分。第一部分为负荷建模与预测,包括了基于智能电表数据的负荷预测方法等。第二部分为电价建模与预测,包括了节点电价数据的子空间特性建模等。第三部分为市场投标行为分析,包括了机组投标行为的特征提取方法等。
  • 作者介绍

  • 目录

    Contents
    1  Introduction to Power Market Data
      1.1  Overview of Electricity Markets
      1.2  Organization and Data Disclosure of Electricity Market
        1.2.1  Transaction Data
        1.2.2  Price Data
        1.2.3  Supply and Demand Data
        1.2.4  System Operation Data
        1.2.5  Forecast Data
        1.2.6  Confidential Data
      1.3  Conclusions
      References
    PartⅠLoad Modeling and Forecasting
    2  Load Forecasting with Smart Meter Data
      2.1  Introduction
      2.2  Framework
      2.3  Ensemble Learning for Probabilistic Forecasting
        2.3.1  Quantile Regression Averaging
        2.3.2  Factor Quantile Regression Averaging
        2.3.3  LASSO Quantile Regression Averaging
        2.3.4  Quantile Gradient Boosting Regression Tree
        2.3.5  Rolling Window-Based Forecasting
      2.4  Case Study
        2.4.1  Experimental Setups
        2.4.2  Evaluation Criteria
        2.4.3  Experimental Results
      2.5  Conclusions
      References
    3  Load Data Cleaning and Forecasting
      3.1  Introduction
      3.2  Characteristics of Load Profiles
        3.2.1  Low-Rank Property of Load Profiles
        3.2.2  Bad Data in Load Profiles
      3.3  Methodology
        3.3.1  Framework
        3.3.2  Singular Value Thresholding (SVT)
        3.3.3  Quantile RF Regression
        3.3.4  Load Forecasting
      3.4  Evaluation Criteria
        3.4.1  Data Cleaning-Based Criteria
        3.4.2  Load Forecasting-Based Criteria
      3.5  Case Study
        3.5.1  Result of Data Cleaning
        3.5.2  Day Ahead Point Forecast
        3.5.3  Day Ahead Probabilistic Forecast
      3.6  Conclusions
      References
    4  Monthly Electricity Consumption Forecasting
      4.1  Introduction
      4.2  Framework

        4.2.1  Data Collection and Treatment
        4.2.2  SVECM Forecasting
        4.2.3  Self-adaptive Screening
        4.2.4  Novelty and Characteristics of SAS-SVECM
      4.3  Data Collection and Treatment
        4.3.1  Data Collection and Tests
        4.3.2  Seasonal Adjustments Based on X-12-ARIMA
      4.4  SVECM Forecasting
        4.4.1  VECM Forecasting
        4.4.2  Time Series Extrapolation Forecasting
      4.5  Self-adaptive Screening
        4.5.1  Influential EEF Identification
        4.5.2  Influential EEF Grouping
        4.5.3  Forecasting Performance Evaluation Considering Different EEF Groups
      4.6  Case Study
        4.6.1  Basic Data and Tests
        4.6.2  Electricity Consumption Forecasting Performance Without SAS
        4.6.3  EC Forecasting Performance with SAS
        4.6.4  SAS-SVECM Forecasting Comparisons with Other Forecasting Methods
      4.7  Conclusions
      References
    5  Probabilistic Load Forecasting
      5.1  Introduction
      5.2  Data and Model
        5.2.1  Load Dataset Exploration
        5.2.2  Linear Regression Model Considering Recency-Effects
      5.3  Pre-Lasso BasedFeature Selection
      5.4  Sparse PenalizedQuantileRegression (Quantile-Lasso)
        5.4.1  Problem Formulation
        5.4.2  ADMM Algorithm
      5.5  Implementation
      5.6  Case Study
        5.6.1  Experiment Setups
        5.6.2  Results
      5.7  Concluding Remarks
      References
    Part ⅡElectricity Price Modeling and Forecasting
    6  Subspace Characteristics of LMP Data
      6.1  Introduction
      6.2  Model and Distribution of LMP
      6.3  Methodology
        6.3.1  Problem Formulation
        6.3.2  Basic Framework
        6.3.3  Principal Component Analysis
        6.3.4  Recursive Basis Search (Bottom-Up)
        6.3.5  Hyperplane Detection (Top-down)
        6.3.6  Short Summary
      6.4  Case Study
        6.4.1  Case 1: IEEE 30-Bus System
        6.4.2  Case 2: IEEE 118-Bus System

        6.4.3  Case 3: Illinois 200-Bus System
        6.4.4  Case 4: Southwest Power Pool (SPP)
        6.4.5  Time Consumption
      6.5  Discussion and Conclusion
        6.5.1  Discussion on Potential Applications
        6.5.2  Conclusion
      References
    7  Day-Ahead Electricity Price Forecasting
      7.1  Introduction
      7.2  Problem Formulation
        7.2.1  Decomposition of LMP
        7.2.2  Short-Term Forecast for Each Component
        7.2.3  Summation and Stacking of Individual Forecasts
      7.3  Methodology
        7.3.1  Framework
        7.3.2  Feature Engineering
        7.3.3  Regression Model Selection and Parameter Tuning
        7.3.4  Model Stacking with Robust Regression
        7.3.5  Metrics
      7.4  Case Study
        7.4.1  Model Selection Results
        7.4.2  Componential Results
        7.4.3  Stacking Results (Overall Improvements)
        7.4.4  Error Distribution Analysis
      7.5  Conclusion
      References
    8  Economic Impact of Price Forecasting Error
      8.1  Introduction
      8.2  General Bidding Models
        8.2.1  Deterministic Bidding Model
        8.2.2  Stochastic Bidding Model
      8.3  Methodology and Framework
        8.3.1  Forecasting Error Modeling
        8.3.2  Multiparametric Linear Programming (MPLP)Theory
        8.3.3  Error Impact Formulation
        8.3.4  Overall Framework
      8.4  Case Study
        8.4.1  Measurement of STPF Error Level
        8.4.2  Case1: LSE with Demand Response Programs
        8.4.3  Case 2: LSE with ESS
        8.4.4  Case3: Stochastic LSE Bidding Model
        8.4.5  TimeConsumption
      8.5  Conclusions and FutureWork
      References
    9  LMP Forecasting and FTR Speculation
      9.1  Introduction
      9.2  Stochastic OptimizationModel
        9.2.1  Model of FTR Portfolio Construction Problem
        9.2.2  Scenario-Based Stochastic Optimization Model
      9.3  Data-Dnven Framework

      9.4  Methodology
        9.4.1  Clustering
        9.4.2  Mid-Term Probabilistic Forecasting
        9.4.3  Copulas for Dependence Modeling
        9.4.4  Training and Evaluation Timeline
        9.4.5  Scenario Generation
      9.5  Case Study
        9.5.1  Data Description
        9.5.2  Comparison Methods
        9.5.3  Statistical Validation of Quantile Regression
        9.5.4  Scenario Quality Evaluation
        9.5.5  Impact of Node Reduction with Clustering
        9.5.6  Revenue and Risk Estimation
        9.5.7  Sensitivity Analysis on the Number of Clusters
      9.6  Conclusion
      References
    Part Ⅲ Market Bidding Behavior Analysis
    10  Pattern Extraction for Bidding Behaviors
      10.1  Introduction
      10.2  Assumptions and Proposed Framework
        10.2.1  Model Assumptions
        10.2.2  Bidding Data Format
        10.2.3  Data-Driven Analysis Framework
      10.3  Data Standardization Processing
        10.3.1  Filtering Available Capacities
        10.3.2  Sampling Bidding Curves
        10.3.3  Unifying Data Length
        10.3.4  Clipping Extreme Prices
      10.4  Adaptive Clustering of Bidding Behaviors
        10.4.1  Distance Measurement
        10.4.2  K-Medoids Clustering
        10.4.3  Adaptive Clustering Procedure
        10.4.4  Clustering Algorithm
      10.5  AEM Data Description
        10.5.1  Description of Market Participants
        10.5.2  Description of Bidding Data
      10.6  Bidding Pattern Analysis
        10.6.1  Parameter Setting
        10.6.2  Bidding Patterns of DUs by Fuel Type
        10.6.3  Comparison of Similar DUs
        10.6.4  Discussion
      10.7  Feature Analysis on Bids
        10.7.1  Discrete Aggregation Feature
        10.7.2  Probability Distribution Feature
        10.7.3  Time Distribution Feature
      10.8  Conclusions
      References
    11  Aggregated Supply Curves Forecasting
      11.1  Introduction
      11.2  Market and Framework

        11.2.1  Market Descriptions
        11.2.2  Forecasting Framework
      11.3  Data Integration and Feature Extraction
        11.3.1  Data Integration
        11.3.2  Feature Extraction
      11.4  ASC Forecasting
        11.4.1  LSTM Model
        11.4.2  Influencing Factors
        11.4.3  Training and Forecasting
        11.4.4  Evaluation Criteria
      11.5  Case Study
        11.5.1  Dataset Description
        11.5.2  Feature Extraction
        11.5.3  ASC Forecasting
        11.5.4  Calculation Information
        11.5.5  Methods Comparison
      11.6  Conclusion
      References
    12  Learning Individual Offering Strategy
      12.1  Introduction
      12.2  Data-Driven Market Simulation Framework
        12.2.1  Market Assumptions
        12.2.2  Offering Data Clustering and Indexing
      12.3  Individual Offering Strategy Learning
        12.3.1  MFNN Model Structure
        12.3.2  MFNN Model Inputs
        12.3.3  MFNN Model Training
        12.3.4  DNN-Based Model Structure
      12.4  Market Clearing Simulation
      12.5  Case Study
        12.5.1  Basic Data
        12.5.2  Individual Offering Behavior Forecasting
        12.5.3  Market Simulation
        12.5.4  Comparison with Current Price Forecasting Methods
        12.5.5  Calculation Efficiency
      12.6  Conclusions
      References
    13  Reward Function Identification of GENCOs
      13.1  Introduction
      13.2  Assumptions and Framework
        13.2.1  Market Assumptions
        13.2.2  Data-Driven Framework
      13.3  Bidding Decision Process Formulation
        13.3.1  Markov Decision Process in Wholesale Markets
        13.3.2  Reinforcement Learning Process
        13.3.3  Bidding Data Integration
      13.4  Reward Function Identification
        13.4.1  Deep Inverse Reinforcement Learning Algorithm
        13.4.2  Discretization Methods for States and Actions
      13.5  Bidding Behavior Simulation

        13.5.1  DQN-Based Bidding Simulation Model
        13.5.2  Value Function and Q-Network
      13.6  Case Study
        13.6.1  Dataset Description
        13.6.2  Parameter Setting
        13.6.3  Reward Function Identification
        13.6.4  Bidding Behavior Simulation
      13.7  Conclusions
      References

同类热销排行榜

[an error occurred while processing this directive]

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>