欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • Python数据分析(第3版影印版)(英文版)
      • 作者:(美)韦斯·麦金尼|责编:张烨
      • 出版社:东南大学
      • ISBN:9787576602500
      • 出版日期:2023/01/01
      • 页数:561
    • 售价:59.2
  • 内容大纲

        本书由Python pandas项目创始人Wes McKinney亲笔撰写,详细介绍利用Python进行操作、处理、清洗和规整数据等方面的具体细节和基本要点。你将在阅读过程中学习到新版本的pandas、NumPy、IPython和Jupyter。
        本书由Wes McKinney创作,他是Python pandas项目的创始人。本书是对Python数据科学工具的实操化、现代化的介绍,非常适合刚学Python的数据分析师或刚学数据科学以及科学计算的Python编程者。数据文件和相关的材料可以在GitHub上找到:使用IPython shell和Jupyter notebook进行探索性计算;学习NumPy(Numerical Python)的基础和高级特性;入门pandas库中的数据分析工具;使用灵活工具对数据进行载入、清洗、变换、合并和重塑;使用matplotlib创建富含信息的可视化;将pandas的groupby功能应用于对数据集的切片、分块和汇总;分析并操作规则和不规则的时间序列数据;利用完整的、详细的示例学习如何解决现实中数据分析问题。
  • 作者介绍

        韦斯·麦金尼是流行的Python开源数据分析库pandas的创始人。他是一名活跃的演讲者,也是Python数据社区和Apache软件基金会的Python/C++开源开发者。目前他在纽约从事软件架构师工作。
  • 目录

    Preface
    1.Preliminaries
      1.1  What Is This Book About
        What Kinds of Data
      1.2  Whv Python for Data Analysis
        Python as Glue
        Solving the Two—Language Problem
        WhvNot Python
      1.3  Essential Python Libraries
        NumPy
        pandas
        matplotlib
        IPython and Iupyter
        SciPy
        scikit-learn
        statsmodels
        Other Packages
      1.4  Installation and Setup
        Miniconda on Windows
        GNU/Linux
        Miniconda on macOS
        Installing Necessary Packages
        Integrated Development Environments and Text Editors
      1.5  Community and Conferences
      1.6  Navigating This Book
        Code Examples
        Data for Examples
        Import Conventions
    2.Python Language Basics,IPython,and Jupyter Notebooks
      2.1  The Python Interpreter
      2.2  IPython Basics
        Running the IPython Shell
        Running the Jupyter Notebook
        Tab Completion
        Introspection
      2.3  Python Language Basics
        Language Semantics
        ScalarTypes
        Control Flow
      2.4  Conclusion
    3.Built.In Data Structures,Functions,and Files
      3.1  Data Structures and Sequences
        Tuple
        List
        Dictionary
        Set
        Built—In Sequence Functions
        List,Set,and Dictionary Comprehensions
      3.2  Functions
        Namespaces,Scope,and Local Functions

        Returning Multiple Values
        Functions Are Objects
        Anonymous(Lambda)Functions
        Generators
        Errors and Exception Handling
      3.3  Files and the Operating System
        Bytes and Unicode with Files
      3.4  Conclusion
    4.NumPy Basic:Arrays and Vectorized Computation
      4.1  The NumPy ndarray:A Multidimensional Array Object
        Creating ndarrays
        DataTypesforndarrays
        Arithmetic with NumPy Arrays
        Basic Indexing and Slicing
        Boolean Indexing
        Fancy Indexing
        Transposing Arrays and Swapping Axes
      4.2  Pseudorandom Number Generation
      4.3  Universal Functions:Fast Element—Wise Array Functions
      4.4  Array—Oriented Programming with Arrays
        Expressing Conditional Logic as Array Operations
        Mathematical and Statistical Methods
        Methods for Boolean Arrays
        Sorting
        Unique and Other Set Logic
      4.5  File Input and Output with Arrays
      4.6  Linear Algebra
      4.7  Example:Random Walks
        Simulating Many Random Walks at Once
      4.8  Conclusion
    5.Getting Startedwith pandas
      5.1  Introduction to pandas Data Structures
        Series
        DataFrame
        Index Objects
      5.2  Essential Functionality
        Reindexing
        Dropping Entries from an Axis
        Indexing,Selection,and Filtering
        Arithmetic and Data Alignment
        Function Application and Mapping
        Sorting and Ranking
        Axis Indexes with Duplicate Labels
      5.3  Summarizing and Computing Descriptive Statistics
        Correlation and C:ovariance
        Unique Values,Value Counts,and Membership
      5.4  Conclusion
    6.Data Loading,Storage,and File Formats
      6.1  Reading and Writing Data in Text Format
        Reading Text Files in Pieces

        WiRing Data to Text Format
        Working with Other Delimited Formats
        TSON Data
        XML and HTML:Wleb Scraping
      6.2  Binary Data Formats
        Reading Microsoft Excel Files
        Using HDF5 Format
      6.3  Interacting with Web APIs
      6.4  Interacting with Databases
      6.5  Conclusion
    ……
    7.DataCleaningand Preparation
    8.Data Wrangling:Join,Combine,and Reshape
    9.Plotting andVisualization
    10.Data Aggregation and Group Operations
    11.TimeSeries
    12.Introduction to Modeling Libraries in Python
    13.DataAnalysis Examples
    A.AdvancedNumPy
    B.MoreontheIPython System
    lndex