-
内容大纲
本书旨在解释使支持向量机成为各种应用的成功建模和预测工具的原理。书中通过展示支持向量机的基本概念,以及最新发展和当前的研究问题来实现这一目标。本书分析了支持向量机成功的至少三个原因:它们在只有少量自由参数的情况下很好地学习的能力,它们对几种类型的模型违反和异常值的鲁棒性,最后是它们的计算效率与其他几种方法进行的比较。 -
作者介绍
-
目录
Preface
Reading Guide
1 Introduction
1.1 Statistical Learning
1.2 Support Vector Machines: An Overview
1.3 History of SVMs and Geometrical Interpretation
1.4 Alternatives to SVMs
2 Loss Functions and Their Risks
2.1 Loss Functions: Definition and Examples
2.2 Basic Properties of Loss Functions and Their Risks
2.3 Margin-Based Losses for Classification Problems
2.4 Distance-Based Losses for Regression Problems
2.5 Further Reading and Advanced Topics
2.6 Summary
2.7 Exercises
3 Surrogate Loss Functions (*)
3.1 Inner Risks and the Calibration Function
3.2 Asymptotic Theory of Surrogate Losses
3.3 Inequalities between Excess Risks
3.4 Surrogates for Unweighted Binary Classification
3.5 Surrogates for Weighted Binary Classification
3.6 Template Loss Functions
3.7 Surrogate Losses for Regression Problems
3.8 Surrogate Losses for the Density Level Problem
3.9 Self-Calibrated Loss Functions
3.10 Further Reading and Advanced Topics
3.11 Summary
3.12 Exercises
4 Kernels and Reproducing Kernel Hilbert Spaces
4.1 Basic Properties and Examples of Kernels
4.2 The Reproducing Kernel Hilbert Space of a Kernel
4.3 Properties of RKHSs
4.4 Gaussian Kernels and Their RKHSs
4.5 Mercer's Theorem (*)
4.6 Large Reproducing Kernel Hilbert Spaces
4.7 Further Reading and Advanced Topics
4.8 Summary
4.9 Exercises
5 Infinite-Sample Versions of Support Vector Machines
5.1 Existence and Uniqueness of SVM Solutions
5.2 A General Representer Theorem
5.3 Stability of Infinite-Sample SVMs
5.4 Behavior for Small Regularization Parameters
5.5 Approximation Error of RKHSs
5.6 Further Reading and Advanced Topics
5.7 Summary
5.8 Exercises
6 Basic Statistical Analysis of SVMs
6.1 Notions of Statistical Learning
6.2 Basic Concentration Inequalities
6.3 Statistical Analysis of Empirical Risk Minimization
6.4 Basic Oracle Inequalities for SVMs
6.5 Data-Dependent Parameter Selection for SVMs
6.6 Further Reading and Advanced Topics
6.7 Summary
6.8 Exercises
7 Advanced Statistical Analysis of SVMs (*)
7.1 Why Do We Need a Refined Analysis?
7.2 A Refined Oracle Inequality for ERM
7.3 Some Advanced Machinery
7.4 Refined Oracle Inequalities for SVMs
7.5 Some Bounds on Average Entropy Numbers
7.6 Further Reading and Advanced Topics
7.7 Summary
7.8 Exercises
8 Support Vector Machines for Classification
8.1 Basic Oracle Inequalities for Classifying with SVMs
8.2 Classifying with SVMs Using Gaussian Kernels
8.3 Advanced Concentration Results for SVMs (*)
8.4 Sparseness of SVMs Using the Hinge Loss
8.5 Classifying with other Margin-Based Losses (*)
8.6 Further Reading and Advanced Topics
8.7 Summary
8.8 Exercises
9 Support Vector Machines for Regression
9.1 Introduction
9.2 Consistency
9.3 SVMs for Quantile Regression
9.4 Numerical Results for Quantile Regression
9.5 Median Regression with the eps-Insensitive Loss (*)
9.6 Further Reading and Advanced Topics
9.7 Summary
9.8 Exercises
10 Robustness
10.1 Motivation
10.2 Approaches to Robust Statistics
10.3 Robustness of SVMs for Classification
10.4 Robustness of SVMs for Regression (*)
10.5 Robust Learning from Bites (*)
10.6 Further Reading and Advanced Topics
10.7 Summary
10.8 Exercises
11 Computational Aspects
11.1 SVMs, Convex Programs, and Duality
11.2 Implementation Techniques
11.3 Determination of Hyperparameters
11.4 Software Packages
11.5 Further Reading and Advanced Topics
11.6 Summary
11.7 Exercises
12 Data Mining
12.1 Introduction
12.2 CRISP-DM Strategy
12.3 Role of SVMs in Data Mining
12.4 Software Tools for Data Mining
12.5 Further Reading and Advanced Topics
12.6 Summary
12.7 Exercises
Appendix
A.1 Basic Equations, Inequalities, and Functions
A.2 Topology
A.3 Measure and Integration Theory
A.3.1 Some Basic Facts
A.3.2 Measures on Topological Spaces
A.3.3 Aumann's Measurable Selection Principle
A.4 Probability Theory and Statistics
A.4.1 Some Basic Facts
A.4.2 Some Limit Theorems
A.4.3 The Weak* Topology and Its Metrization
A.5 Functional Analysis
A.5.1 Essentials on Banach Spaces and Linear Operators
A.5.2 Hilbert Spaces
A.5.3 The Calculus in Normed Spaces
A.5.4 Banach Space Valued Integration
A.5.5 Some Important Banach Spaces
A.5.6 Entropy Numbers
A.6 Convex Analysis
A.6.1 Basic Properties of Convex Functions
A.6.2 Subdifferential Calculus for Convex Functions
A.6.3 Some Further Notions of Convexity
A.6.4 The Fenchel-Legendre Bi-conjugate
A.6.5 Convex Programs and Lagrange Multipliers
A.7 Complex Analysis
A.8 Inequalities Involving Rademacher Sequences
A.9 Talagrand's Inequality
References
Notation and Symbols
Abbreviations
Author Index
Subject Index
同类热销排行榜
- C语言与程序设计教程(高等学校计算机类十二五规划教材)16
- 电机与拖动基础(教育部高等学校自动化专业教学指导分委员会规划工程应用型自动化专业系列教材)13.48
- 传感器与检测技术(第2版高职高专电子信息类系列教材)13.6
- ASP.NET项目开发实战(高职高专计算机项目任务驱动模式教材)15.2
- Access数据库实用教程(第2版十二五职业教育国家规划教材)14.72
- 信号与系统(第3版下普通高等教育九五国家级重点教材)15.08
- 电气控制与PLC(普通高等教育十二五电气信息类规划教材)17.2
- 数字电子技术基础(第2版)17.36
- VB程序设计及应用(第3版十二五职业教育国家规划教材)14.32
- Java Web从入门到精通(附光盘)/软件开发视频大讲堂27.92
推荐书目
-
孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...
-
时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...
-
本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...