欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 集成式工艺规划与车间调度方法(英文版)(精)
      • 作者:编者:Xinyu Li//Liang Gao
      • 出版社:科学
      • ISBN:9787030756138
      • 出版日期:2023/01/01
      • 页数:462
    • 售价:102.4
  • 内容大纲

        本书总结了作者在集成式工艺规划与车间调度问题上的研究成果,共包含5个部分共二十一章。第一部分重点对工艺规划、车间调度、柔性作业车间调度以及集成式工艺规划与车间调度等问题的最新研究成果进行了系统的综述;第二部分重点针对单目标的集成式工艺规划与车间调度问题的理论与方法进行系统介绍,提出了该问题的数学模型以及高效优化方法;第三部分重点针对多目标的集成式工艺规划与车间调度问题的理论与方法进行系统介绍,提出了该问题的多目标数学模型以及高效优化及决策方法;第四部分重点针对不确定及动态环境下的集成式工艺规划与车间调度问题的理论与方法进行系统介绍,提出了该问题的数学模型、处理策略以及高效优化方法;第五部分重点针对集成式工艺规划与车间调度问题研究成果的应用进行系统介绍,设计并开发了针对该问题的软件系统,并介绍了该系统的在相关生产车间的应用情况。
  • 作者介绍

  • 目录

    1 Introduction for Integrated Process Planning and Scheduling
      1.1  Process Planning
      1.2  Shop Scheduling
        1.2.1  Problem Statement
        1.2.2  Problem Properties
        1.2.3  Literature Review
      1.3  Integrated Process Planning and Shop Scheduling
    References
    2.Review for Flexible Job Shop Scheduling
      2.1  Introduction
      2.2  Problem Description
      2.3  The Methods for FISP
        2.3.1  Exact Algorithms
        2.3.2  Heuristics
        2.3.3  Meta-Heuristics
      2.4  Real-World Applications
      2.5  Development Trends and Future Research Opportunities
        2.5.1  Development Trends
        2.5.2  Future Research Opportunities
    References
    3 Review for Integrated Process Planning and Scheduling
      3.1  IPPS in Support of Distributed and Collaborative Manufacturing
      3.2  Integration Model of IPPS
        3.2.1  Non-I ,inear Process Planning
        3.2.2  Closed-Loop Process Planning
        3.2.3  Distributed Process Planning
        3.2.4  Comparison of Integration Models
      3.3  Implementation Approaches of IPPS
        3.3.1  Agent- Based Approaches of IPPS
        3.3.2  Petri-Net-Based Approaches of IPPS
        3.3.3  Algorithm-Based Approaches of IPPS
        3.3.4  Critique of Curent Implementation Approachs
    References
    4 Improved Genetic Programming for Process Planning
      4.1  Introduction
      4.2  Flexible Process Planning
        4.2.1  Flexible Process Plans
        4.2.2  Representation of Flexible Process Plans
        4.2.3  Mathematical Model of Flexible Process Planning
      4.3  Brief Review of GP
      4.4  GP for Flexible Process Planning
        4.4.1  The Flowchart of Proposed Metbod
        4.4.2  Convert Network to Tree, Encoding, and Decoding
        4.4.3  Initial Population and Fitness Evaluation
        4.4.4  GP Operators
      4.5  Case Studies and Discussion
        4.5.1  Implementation and Testing
        4.5.2  Comparison with GA
      4.6  Conclusion
    References

    5 An Efficient Modified Particle Swarm Optimization Algorithm for Process Planning
      5.1  Introduction
      5.2  Related Work
        5.2.1  Process Planning
        5.2.2  PSO with Its Applications
      5.3  Problem Formulation
        5.3.1  Flexible Process Plans
        5.3.2  Mathematical Model of Process Planning Problem
      5.4  Modified PSO for Process Planning
        5.4.1  Modified PSO Model
        5.4.2  Modified PSO for Process Planning
      5.5  Experimental Studies and Discussions
        5.5.1  Case Studies and Results
        5.5.2  Discussion
      5.6  Conclusions and Future Research Studics
    References
    6 A Hybrid Algorithm for Job Shop Scheduling Problem
      6.1  Introduction
      6.2  Problem Formulation
      6.3  Proposed Hybrid Algorithm for JSP
        6.3.1  Description of the Proposed Hybrid Algorithm
        6.3.2  Encoding and Decoding Scheme
        6.3.3  Updating Srace
        6.3.4  Local Search of the Particle
      6.4  The Neighborthood Structure Evaluation Method Based on Logistic Model
        6.4.1  The Logistic Model
        6.4.2  Defining Neighbothood Structures
        6.4.3  The Evaluation Method Based on Logistic Model
      6.5  Experiments and Discussion
        6.5.1  The Search Ability of VNS
        6.5.2  Benchmark Experiments
        6.5.3  Convergence Analysis of HPV
        6.5.4  Discussion
      6.6  Conclusions and Future Works
    References
    7 An Efctive Genetic Algorithm for FJSP
      7.1  Introduction
      7.2  Problem Formulation
      7.3  L ,iterature Review
      7.4  An Effective GA for FISP
        7.4.1  Representation
        7.4.2  Decoding the MSOS Chromosome to a Feasibleand Active Schedule
        7.4.3  Initial Population
        7.4.4  Selection Operator
        7.4.5  Crossover Operator
        7.4.6  Mutation Operator
        7.4.7  Framework of the Effective GA
      7.5  Computational Results
      7.6  Conclusions and Future Study
    References

    8 An Elfective Collaborative Evolutionary Algorithm for FJSP
      8.1  Initroduction
      8.2  Problem Formulation
    Proposed MSCEA for FISP
        8.3.1  The Optimization Strategy of MSCEA
        8.3.2  Encoding
        8.3.3  Initial Population and Fitness Evaluation
        8.3.4  Genetic Operators
        8.3.5  Terminate Criteria
        8.3.6  Framework of MSCEA
      8.4  Experimental Studies
      8.5  Conclusions
    References
    9 Mathematical Modeling and Evolutionary Algorithum-Based Approach for IPPS
      9.1  Introduction
      9.2  Problem Formulation and Mathematical Modeling
        9.2.1  Problem Formulation
        9.2.2  Mathematical Modeling
      9.3  Evolutionary Algorithm-Based Approach for IPPS
        9.3.1  Representation
        9.3.2  Initialization and Fitness Evaluation
          9.3.3 Genetic Operators .
      9.4  Experimental Studies and Discussions
        9.4.1  Example Problems and Experimental Results
        9.4.2  Discussions
        9.5 Conclusion.
    References
    10 An Agent-Based Approach for IPPS
      10.1  Literature Survey
      10.2  Problem Formulation
      10.3  Proposed Agent-Based Approach for IPPS
        10.3.1  MAS Architecture
        10.3.2  Agents Description
      10.4  .Implementation and Experimental Studies
        10.4.1  System Implenentaion
      10.42  Experimental Results and Discussion
        10.4.3  Discussion
      10.5  Conclusion
    References
    11 A Modified Genetic Algorithm Based Approach for IPPS
      11.1  Integration Model of IPPS
      11.2  Representations for Process Plans and Schedules
        11.3 Modified GA-Based Optimization Approach.
        11.3.1  Flowchart of the Proposed Approach
        11.3.2  Genetic Components for Process Planning
        11.3.3  Genetic Components for Scheduling
      11.4  Experimental Studics and Discussion
        11.4.1  Test Problems and Experimental Results
        11.4.2  Comparison with Hierarchical Approach
      11.5  Discussion

      11.6  Conclusion
    References
    12 An Efective Hybrid Algorithm for IPPS
      12.1  Hybnd Algorithm Mode
        12.1.1  Traditionally Genetic Algorithm
        12.1.2  Local Search Strategy
        12.1.3  .Hybrid Algorithm Model
      12.2  Hybrid Algorithm for IPPS
        12.2.1  Encoding and Decoding
        12.2.2  Initial Population and Fitness Evaluation
          12.2.3 Genetic Operators for IPPS .
      12.3  Experimental Studies and Discussions
        12.3.1  Test Problems
      123.2  Experimental Results
      12.4  Discussion
      12.5  Conclusion
    References
    13 An Effective Hybrid Particle Swarm Optimization Algorithm for Multi-objective FJSP
      13.1  Introduction
        13.
      13.3  Particle Swarm Optimization for FISP
        13.3.1  Traditional PSO Algorithn
        13.3.2  Tabu Search Strategy
        13.3.3  Hybrid PSO Algorithm Model
        13.3.4  Fitness Function
        13.3.5  Encoding Scheme
        13.3.6  .Information Exchange
      13.4  Experimental Results
        13.4.1  Problem 4 x
        13.4.2  Problem 8 x
        13.4.3  Problem 10 x
        13.4.4  .Problem 15 x
      13.5  Conclusions and Future Research
    References
    14 A Multi- objctive GA Based on Immune and EntropyPrinciple for FJSP
      14.1  Introduction
      14.2  Multi-objective Flexible Job Shop Scheduling Problem
      14.3  Basic Concepts of Multi-objective Optimization
      14.4  Handing MOFISP with MOGA Based on Immune and .Entropy Principle
        14.4.1  Fitness Assignment Scheme
        14.4.2  Immune and Entropy Principle
        14.4.3  Initialization
        14.4.4  Encoding and Decoding Scheme
        14.4.5  Selection Operator
        14.4.6  Crossover Operator
        14.4.7  Mutation Operator
        14.4.8  Main Algorithm
      14.5  Experimental Rcesults
      14.6  Conclusions
    References

    15 An Efective Genetic Algorithm for Multi-objective IPPSwith V arious Flexibilities in Process Planning
      15.1  Introduction
      15.2  Multi-objective IPPS Description
        15.2.1  IPPS Description
        15.2.2  Mli-objctive Optimizaion
      15.3  Proposed Genetic Algorithm for Multi objective IPPS
        15.3.1  Worktlow of the Proposed Algorithm
        15.3.2  Genetic Components for Process Planning
        15.3.3  Genetic Components for Scheduling
        15.3.4  Pareto Set Update Scheme
      15.4  Experimental Results and Discussions
        15.4.1  Experiment
        15.4.2  .Experiment
        15.4.3  Discussions
      15.5  Conclusion and Future Works
    References
    16 Application of Game Theory-Based Hybrid Algorithm for Multi-objective IPPS
      16.1  Introduction
      16.2  Problem Formulation
      16.3  .Game Theory Model of Muli-objective IPP
        16.3.1  Game Theory Model of Multi-objective Optimization Problem
        16.3.2  Nash Equilibrium and MOP
        16.3.3  Non-cooperative Game Theory for Multi- objective IPPS Proble
      16.4  Applications of the Proposed Algorithm on Multi-objective IPPS
        16.4.1  Workflow of the Proposed Algorthm
        16.4.2  .Nash Equilibrium Solutions Algorithm for Multi-objective IPPS
      16.5  Experimental Results
        16.5.1  Problem
        16.5.2  Problem
        16.5.3  Conclusions
    References
    17 A Hybrid Intelligent Algorithm and Rescheduling Technique for Dynamnic JSP
      17.1  Introduction
      17.2  Statement of Dynamie JSPs
        17.2.1  The Proposed Mathematical Model
        17.2.2  The Reschedule Strategy
        17.2.3  Generate Real-Time Events
      17.3  The Proposed Rescheduling Technique for Dynamic JSPs
        17.3.1  The Rescheduling Technique in General
        17.3.2  The Hybrid GA and TS for Dynamic JSP
      17.4  Experiential Environments and Results
        17.4.1  Experimental Environments
        17.4.2  Results and Discussion
      17.5  Conclusions and Future Works
    18 A Hybrid Genetic Algorithm and Tabu Search for Multi-objective Dynamic JSP
      18.1  Introduction
      18.2  Literature Review
      18.3  The Multi-obective Dynamic Job Shop Scheduling
      18.4  The Proposed Method for Dynamic JSP
        18.4.1  The Flow Chart of the Proposed Method

        18.4.2  Simulator
        18.4.3  The Hybrid GA and TS for Dynamic JSP
        18.5 Experimental Design and Rsuls.
        18.5.1  Experimental Design
        18.5.2  Results and Discussions
      18.6  Conclusions and Future Researches
      References .
    19 GEP-Based Reactive Scheduling Policies for DynamicFJSP with Job Release Dates
      19.1  Introduction
      19.2  Problem Description
      19.3  Heuristic for DFISP
      19.4  GEP Based Reactive Scheduling Polices Constructing Approach
        19.4.1  Framework of GEP-Based Reactive Scheduling Policies Constructing Approach
        19.4.2  Define Element Sets
        19.4.3  Chromosome Representation
        19.4.4  Genetic Operators
      19.5  Experiments and Results
        19.5.1  GEP Parameter Settings
        19.5.2  Design of the Experiments
        19.5.3  Analysis of the Results
      19.6  Conclusion and Future Work
    References
    20 A Hybrid Genetic Algorithm with Variable Neighborhood Search for Dynamic IPPS
      20.1  Introduction
      20.2  Related Work
      20.3  Dynamic IPPS Problem Formulation
        20.3.1  Problem Definition
        20.3.2  Framework for DIPPS
        2.3.3  Dynamic IPPS Model
      20.4  Proposed Hybrid GAVNS for Dynamic IPPS
        20.4.1  Flowchart of Hybrid GAVNS
        20.4.2  GA for IPPS
        20.4.3  VNS for Local Search
      20.5  Experiments and Discussions
        20.5.1  Experiment
        20.5.2  Experiment
        20.5.3  Experiment
        20.5.4  Discussion
      20.6  Conclusion and Future Works
    References
    21 IPPS Simulation Prototype System
      21.1  Application Background Analysis
      21.2  System Architecture
      21.3  Implementation and Application
      21.4  Conclusion
    References

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>