-
内容大纲
本书详细阐述了与机器学习平台架构相关的基本解决方案,主要包括机器学习和机器学习解决方案架构,机器学习的业务用例,机器学习算法,机器学习的数据管理,开源机器学习库,Kubernetes容器编排基础设施管理,开源机器学习平台,使用AWS机器学习服务构建数据科学环境,使用AWS机器学习服务构建企业机器学习架构,高级机器学习工程,机器学习治理、偏差、可解释性和隐私,使用人工智能服务和机器学习平台构建机器学习解决方案等内容。此外,本书还提供了相应的示例、代码,以帮助读者进一步理解相关方案的实现过程。
本书适合作为高等院校计算机及相关专业的教材和教学参考书,也可作为相关开发人员的自学用书和参考手册。 -
作者介绍
戴维·平,是一位资深技术领导者,在技术和金融服务行业拥有超过25年的经验。他的技术重点领域包括云架构、企业机器学习平台设计、大规模的模型训练、智能文档处理、智能媒体处理、智能搜索和数据平台。他目前在AWS领导一个人工智能/机器学习解决方案架构团队,帮助全球公司在AWS云中设计和构建人工智能/机器学习解决方案。在加入AWS之前,David在Credit Suisse和JPMorgan担任过多种高级技术领导职务。他的职业生涯始于英特尔的软件工程师。David拥有康奈尔大学的工程学位。 -
目录
第1篇 使用机器学习解决方案架构解决业务挑战
第1章 机器学习和机器学习解决方案架构
1.1 人工智能和机器学习的定义
1.2 监督机器学习
1.3 无监督机器学习
1.4 强化学习
1.5 机器学习与传统软件
1.6 机器学习生命周期
1.6.1 业务理解和机器学习问题框架
1.6.2 数据理解和数据准备
1.6.3 模型训练和评估
1.6.4 模型部署
1.6.5 模型监控
1.6.6 业务指标跟踪
1.7 机器学习的挑战
1.8 机器学习解决方案架构
1.8.1 业务理解和机器学习转型
1.8.2 机器学习技术的识别和验证
1.8.3 系统架构设计与实现
1.8.4 机器学习平台工作流自动化
1.8.5 安全性和合规性
1.9 小测试
1.10 小结
第2章 机器学习的业务用例
2.1 金融服务中的机器学习用例
2.1.1 资本市场前台
2.1.2 资本市场后台运营
2.1.3 风险管理和欺诈检测
2.2 媒体和娱乐领域的机器学习用例
2.2.1 内容开发和制作
2.2.2 内容管理和发现
2.2.3 内容分发和客户参与
2.3 医疗保健和生命科学领域的机器学习用例
2.3.1 医学影像分析
2.3.2 药物发现
2.3.3 医疗数据管理
2.4 制造业中的机器学习用例
2.4.1 工程和产品设计
2.4.2 制造运营——产品质量和产量
2.4.3 制造运营——机器维护
2.5 零售业中的机器学习用例
2.5.1 产品搜索和发现
2.5.2 目标市场营销
2.5.3 情绪分析
2.5.4 产品需求预测
2.6 机器学习用例识别练习
2.7 小结
第2篇 机器学习的科学、工具和基础设施平台
第3章 机器学习算法
3.1 技术要求
3.2 机器学习的原理
3.3 机器学习算法概述
3.3.1 选择机器学习算法时的注意事项
3.3.2 机器学习算法类型
3.4 分类和回归问题的算法
3.4.1 线性回归算法
3.4.2 逻辑回归算法
3.4.3 决策树算法
……
第3篇 企业机器学习平台的技术架构设计和监管注意事项
同类热销排行榜
- C语言与程序设计教程(高等学校计算机类十二五规划教材)16
- 电机与拖动基础(教育部高等学校自动化专业教学指导分委员会规划工程应用型自动化专业系列教材)13.48
- 传感器与检测技术(第2版高职高专电子信息类系列教材)13.6
- ASP.NET项目开发实战(高职高专计算机项目任务驱动模式教材)15.2
- Access数据库实用教程(第2版十二五职业教育国家规划教材)14.72
- 信号与系统(第3版下普通高等教育九五国家级重点教材)15.08
- 电气控制与PLC(普通高等教育十二五电气信息类规划教材)17.2
- 数字电子技术基础(第2版)17.36
- VB程序设计及应用(第3版十二五职业教育国家规划教材)14.32
- Java Web从入门到精通(附光盘)/软件开发视频大讲堂27.92
推荐书目
-
孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...
-
时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...
-
本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...