-
内容大纲
过去十年人们见证了人工智能和机器学习(AI/ML)技术的广泛应用。然而,由于在广泛实施过程中缺乏监督,导致了一些本可以通过适当的风险管理来避免的事故和有害后果。在我们认识到AI/ML的真正好处之前,从业者必须了解如何降低其风险。
本书描述了负责任的AI方法,这是一种以风险管理、网络安全、数据隐私、应用社会科学方面的最佳实践为基础,用于改进AI/ML技术、业务流程、文化能力的综合性框架。作者Patrick Hall、James Curtis、Parul Pandey为那些希望帮助组织、消费者和公众改善实际AI/ML系统成果的数据科学家创作了这本指南。 -
作者介绍
-
目录
Foreword
Preface
Part Ⅰ. Theories and Practical Applications of AI Risk Management
1.Contemporary Machine Learning Risk Management
A Snapshot of the Legal and Regulatory Landscape
The Proposed EU AI Act
US Federal Laws and Regulations
State and Municipal Laws
Basic Product Liability
Federal Trade Commission Enforcement
Authoritative Best Practices
AI Incidents
Cultural Competencies for Machine Learning Risk Management
Organizational Accountability
Culture of Effective Challenge
Diverse and Experienced Teams
Drinking Our Own Champagne
Moving Fast and Breaking Things
Organizational Processes for Machine Learning Risk Management
Forecasting Failure Modes
Model Risk Management Processes
Beyond Model Risk Management
Case Study: The Rise and Fall of Zillow's iBuying ~
Fallout
Lessons Learned
Resources
2.Interpretable and Explainable Machine Learning
Important Ideas for Interpretability and Explainability
Explainable Models
Additive Models
Decision Trees
An Ecosystem of Explainable Machine Learning Models
Post Hoc Explanation
Feature Attribution and Importance
Surrogate Models
Plots of Model Performance
Cluster Profiling
Stubborn Difficulties of Post Hoc Explanation in Practice
Pairing Explainable Models and Post Hoc Explanation
Case Study: Graded by Algorithm
Resources
3.Debugging Machine Learning Systems for Safety and Performance
Training
Reproducibility
Data Quality
Model Specification for Real-World Outcomes
Model Debugging
Software Testing
Traditional Model Assessment
Common Machine Learning Bugs
Residual Analysis
Sensitivity Analysis
Benchmark Models
Remediation: Fixing Bugs
Deployment
Domain Safety
Model Monitoring
Case Study: Death by Autonomous Vehicle
Fallout
An Unprepared Legal System
Lessons Learned
Resources
……
4.Managing Bias in Machine Learning
5.Security for Machine Learning
Part Ⅱ.Putting AI Risk Management into Action
6.Explainable Boosting Machines and Explaining XGBoost
7.Explaining a PyTorch Image Classifier
8.Selecting and Debugging XGBoost Models
9.Debugging a PyTorch Image Classifier
10.Testing and Remediating Bias with XGBoost
11.Red-Teaming XGBoost
Part Ⅲ.Conclusion
12.How to Succeed in High-Risk Machine Learning
同类热销排行榜
- C语言与程序设计教程(高等学校计算机类十二五规划教材)16
- 电机与拖动基础(教育部高等学校自动化专业教学指导分委员会规划工程应用型自动化专业系列教材)13.48
- 传感器与检测技术(第2版高职高专电子信息类系列教材)13.6
- ASP.NET项目开发实战(高职高专计算机项目任务驱动模式教材)15.2
- Access数据库实用教程(第2版十二五职业教育国家规划教材)14.72
- 信号与系统(第3版下普通高等教育九五国家级重点教材)15.08
- 电气控制与PLC(普通高等教育十二五电气信息类规划教材)17.2
- 数字电子技术基础(第2版)17.36
- VB程序设计及应用(第3版十二五职业教育国家规划教材)14.32
- Java Web从入门到精通(附光盘)/软件开发视频大讲堂27.92
推荐书目
-
孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...
-
时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...
-
本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...