婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾剧粯绻涢幋鐑嗙劯婵炴垶鐟﹂崕鐔兼煏婵炲灝鍔氶柣搴弮濮婃椽宕楅懖鈹垮仦闂佸搫鎳忕划宀勬偩閻戣棄钃熼柕澶涚畱閳ь剛鏁婚弻銊モ攽閸℃侗鈧鏌$€n偆銆掔紒杈ㄥ浮閸┾偓妞ゆ帒瀚壕鍏兼叏濡灝浜归柛鐐垫暬閺岋綁鎮╅悜妯糕偓鍐偣閳ь剟鏁冮埀顒€宓勯梺鍛婄☉鏋ù婊勭矒閺屻劑寮村Δ鈧禍楣冩倵濞堝灝鏋涘褍閰i獮鎴﹀閻橆偅鏂€闁诲函缍嗘禍璺横缚婵犲洦鈷戠紓浣光棨椤忓嫷鍤曢悹铏规磪閹烘绠涢柣妤€鐗冮幏娲⒒閸屾氨澧涚紒瀣浮楠炴牠骞囬鐘殿啎閻庣懓澹婇崰鏍嵁閺嶎厽鐓熼柨婵嗘噹濡茬粯銇勯锝囩畼闁圭懓瀚伴幖褰掓偡閺夎法顔囬梻鍌氬€风欢姘跺焵椤掑倸浠滈柤娲诲灡閺呰埖瀵肩€涙ḿ鍘炬俊銈忕畳濞夋洜鑺遍崸妤佺厪闁搞儯鍔屾慨宥嗩殽閻愭潙娴鐐差儔閹粓宕卞鍡橈紙闂傚倸鍊搁崐椋庣矆娓氣偓楠炴牠顢曚綅閸ヮ剦鏁嶉柣鎰綑閳ь剝鍩栫换婵嬫濞戞艾顣哄銈冨劜瀹€鎼佸蓟濞戔懇鈧箓骞嬪┑鍥╀簮婵犵鍓濊ぐ鍐偋閹捐钃熼柨鐔哄Т缁€鍐煃閸濆嫬鈧悂寮冲Δ鍛拺濞村吋鐟х粔顒€霉濠婂骸澧版俊鍙夊姍楠炴帒螖閳ь剚鍎柣鐔哥矊闁帮絽顕i幎钘夌厸闁告劦浜為敍婊堟煛婢跺﹦澧戦柛鏂跨Ч钘熼柛顐犲劜閻撴稑霉閿濆牜娼愮€规洖鐭傞弻鈩冩媴鐟欏嫬纾抽梺杞扮劍閹瑰洭寮幘缁樻櫢闁跨噦鎷� [闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掍礁鍓銈嗗姧缁犳垿鐛姀銈嗙厓閺夌偞澹嗛崝宥嗐亜閺傚灝顏紒杈ㄦ崌瀹曟帒顫濋钘変壕闁告縿鍎抽惌娆撴煕閺囥劌鐏犵紒鐙€鍨堕弻銊╂偆閸屾稑顏� | 闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳氨绱撻崒娆掑厡缂侇噮鍨跺畷婵單旈崘銊ョ亰闂佸搫鍟悧濠囧磹婵犳碍鐓㈡俊顖欒濡叉悂鏌f惔顔煎籍婵﹨娅g划娆撳箰鎼淬垺瀚抽梻浣虹《閺呮盯宕弶鎴殨闁归棿绀侀崘鈧銈嗘尵閸犳捇宕㈤鍛瘈闁汇垽娼ф禒婊堟煟韫囨梻绠炵€规洘绻傞~婵嬫嚋閻㈤潧骞愰梻浣呵归張顒勩€冮崨顔绢洸闁跨噦鎷�]

    • 深度理解算法(图表示学习的推荐系统研究)
      • 作者:马心陶|责编:颜林柯
      • 出版社:社科文献
      • ISBN:9787522835822
      • 出版日期:2024/05/01
      • 页数:155
    • 售价:39.2
  • 内容大纲

        本书针对推荐系统中的二部图、社交网络和知识图谱的图结构模式,研究基于图表示学习的深度推荐系统。通过挖掘图信息中的隐性关系和高阶关系,使用图学习的方式探索用户和产品的潜在关联,弥补相关推荐系统研究在挖掘用户之间或者产品之间隐性关系方面的不足,形成一系列合理而且有效的推荐技术。增加推荐系统输入的多样性,运用社交网络和知识图谱等辅助信息,缓解推荐系统目前面临的“数据稀疏”、“冷启动”等问题,提高推荐系统的准确性和多样性,为推荐系统技术的发展提供可参考的方向。
  • 作者介绍

        马心陶     博士,吉林财经大学管理科学与信息工程学院教师。2011年赴德国留学,获学士与硕士学位;2022年毕业于吉林大学计算机科学与技术学院,获工学博士学位。主要研究方向为推荐系统、知识图谱与社交网络。在核心期刊和国际学术会议上发表论文10余篇。主持吉林省科学技术厅项目、吉林省教育厅科学规划项目等多项,参与国家自然科学基金和国家社会科学基金项目多项。
  • 目录

    第1章  绪论
      1.1  推荐系统背景
      1.2  国内外研究进展
      1.3  研究问题与内容
      1.4  本书组织架构
    第2章  推荐系统概述
      2.1  引言
      2.2  传统推荐系统和基于深度学习的推荐系统
      2.3  基于图表示学习的推荐系统
      2.4  推荐系统常用的评价指标
    第3章  基于二部图隐性关系学习的推荐系统
      3.1  引言
      3.2  二部图隐性关系学习模型
      3.3  实验评估及分析
      3.4  本章小结
    第4章  基于社交网络图表示学习的推荐系统
      4.1  引言
      4.2  多注意力模型的社交网络推荐系统
      4.3  实验评估及分析
      4.4  本章小结
    第5章  基于传播的知识图谱推荐系统
      5.1  引言
      5.2  双传播机制的知识图谱推荐
      5.3  实验评估及分析
      5.4  本章小结
    第6章  基于邻域的知识图谱推荐系统
      6.1  引言
      6.2  基于邻域交互的多任务知识图谱推荐
      6.3  实验评估及分析
      6.4  本书算法比较
      6.5  本章小结
    第7章  总结与展望
      7.1  全书总结
      7.2  研究展望
    参考文献