欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 人工智能的数学基础(数据之本)
      • 作者:于江生|责编:盛东亮//钟志芳
      • 出版社:清华大学
      • ISBN:9787302627357
      • 出版日期:2024/08/01
      • 页数:560
    • 售价:67.2
  • 内容大纲

        本书是《人工智能的数学基础——随机之美》的姊妹篇,旨在为读者提供一套较为完整且实用的统计建模工具。它以统计大师费舍尔和内曼的统计思想之争为主线,介绍了数理统计学和统计机器学习的主要成就,以及在人工智能中的一些应用和计算机实践。
        全书共分四部分:第一部分是统计学历史背景(第1章和第2章),介绍了数理统计学奠基人费舍尔和内曼的学术成就、数理统计学简史。第二部分是经典统计学(第3章~第6章),涉及统计学的基本概念、参数估计理论、假设检验、回归分析与方差分析。第三部分是现代统计学(第7章~第9章),涵盖了多元统计分析(如核方法、特征工程、聚类、分类等)、期望最大化算法、时间序列分析等内容。第四部分是附录,包含常用科学计算软件(R、Maxima、GnuPlot等)、最优化方法、核密度估计、再生核希尔伯特空间、张量分析等背景知识。
        本书适合作为普通高等学校计算机科学专业的学生学习统计学相关知识的读物,也适用于对人工智能和机器学习感兴趣的高年级本科生和研究生,要求读者具备线性代数、数学分析(或微积分)和概率论的基础。
  • 作者介绍

        于江生,应用数学博士,曾在北京大学、堪萨斯大学、韦恩州立大学工作多年。主要研究方向是人工智能、统计机器学习、贝叶斯数据分析、计算语言学、图像处理、生物信息学等。已发表四十多篇学术论文(第一作者),拥有近二十项美国算法类专利。获教育部科技进步一等奖(2007年)和自然科学一等奖(2011年)。曾任华为2012泊松实验室主任、机器学习和应用数学首席科学家。
  • 目录

    第一部分  统计学历史背景
      第1章  费舍尔和内曼的学术成就
        1.1  费舍尔生平
          1.1.1  费舍尔的主要著作
          1.1.2  费舍尔的统计思想
        1.2  内曼生平
          1.2.1  内曼的置信区间与假设检验
          1.2.2  内曼的归纳行为
      第2章  数理统计学简史
        2.1  20世纪前的统计学
        2.2  20世纪上半叶的统计学
        2.3  20世纪下半叶的统计学
        2.4  21世纪的统计学
        2.5  推荐读物
    第二部分  经典统计学
      第3章  统计学的一些基本概念
        3.1  样本的特征
          3.1.1  次序统计量
          3.1.2  经验分布及其性质
          3.1.3  样本矩及其极限分布
        3.2  样本统计量及其性质
          3.2.1  统计量的抽样分布
          3.2.2  重抽样和自助法
          3.2.3  统计量的充分性
      第4章  参数估计理论
        4.1  点估计及其优良性
          4.1.1  相合性与渐近正态性
          4.1.2  有效性
          4.1.3  折刀法
          4.1.4  点估计之矩方法和最大似然法
        4.2  内曼置信区间估计
          4.2.1  基于马尔可夫不等式的区间估计
          4.2.2  枢轴量法
          4.2.3  大样本区间估计
          4.2.4  费舍尔的信任估计
      第5章  假设检验
        5.1  内曼-皮尔逊假设检验理论
          5.1.1  功效函数与两类错误的概率
          5.1.2  内曼-皮尔逊基本引理与似然比检验
          5.1.3  广义似然比检验
          5.1.4  假设检验与置信区间估计的关系
        5.2  大样本检验
          5.2.1  拟合优度检验
          5.2.2  独立性的列联表检验
      第6章  回归分析与方差分析
        6.1  线性回归模型
          6.1.1  最小二乘估计
          6.1.2  线性回归的若干性质
          6.1.3  回归模型的假设检验
          6.1.4  正交多项式回归

          6.1.5  贝叶斯线性回归
          6.1.6  对数率回归
        6.2  方差分析模型
          6.2.1  单因素方差分析
          6.2.2  两因素方差分析
    第三部分  现代统计学
      第7章  多元统计分析简介
        7.1  核方法及其在回归上的应用
          7.1.1  核函数的性质
          7.1.2  基于最优化的核线性回归
          7.1.3  贝叶斯核线性回归
        7.2  特征工程
          7.2.1  主成分分析
          7.2.2  因子分析
          7.2.3  独立成分分析
          7.2.4  多维缩放与等距映射
          7.2.5  局部嵌入的降维
          7.2.6  塔克分解
        7.3  聚类
          7.3.1  层级聚类
          7.3.2  k-均值聚类
        7.4  分类
          7.4.1  近邻法
          7.4.2  决策树
          7.4.3  费舍尔线性判别分析
          7.4.4  支持向量机
          7.4.5  基于高斯过程的分类
          7.4.6  人工神经网络
      第8章  期望最大化算法
        8.1  完全数据与最大似然估计
          8.1.1  EM算法及其收敛速度
          8.1.2  指数族的EM算法
        8.2  期望最大化算法的应用
          8.2.1  分支个数已知的高斯混合模型
          8.2.2  针对删失数据的EM算法
          8.2.3  概率潜在语义分析
        8.3  数据增扩算法与缺失数据分析
          8.3.1  经典的数据增扩算法
          8.3.2  穷人的数据增扩算法
      第9章  时间序列分析初步
        9.1  时间序列模型
          9.1.1  ARMA模型
          9.1.2  样本(偏)自相关函数
          9.1.3  经典分解模型
        9.2  预测与估计
          9.2.1  指数平滑
          9.2.2  最佳线性预测
          9.2.3  ARMA模型的估计
        9.3  隐马尔可夫模型及算法
          9.3.1  隐马尔可夫模型

          9.3.2  概率有限状态转换器
          9.3.3  观测序列的概率:向前算法与向后算法
          9.3.4  状态序列的概率:维特比算法
          9.3.5  模型参数的估计:鲍姆-韦尔奇算法
        9.4  状态空间模型与卡尔曼滤波
          9.4.1  状态的最佳线性估计
          9.4.2  参数估计
    第四部分  附录
      附录A  软件R、Maxima和GnuPlot简介
        A.1  R:最好的统计软件
        A.2  Maxima:符号计算的未来之路
        A.3  GnuPlot:强大的函数绘图工具
      附录B  一些常用的最优化方法
        B.1  梯度下降法
        B.2  高斯-牛顿法
        B.3  拉格朗日乘子法
        B.4  非线性优化方法
        B.5  随机最优化
      附录C  核密度估计
      附录D  再生核希尔伯特空间
        D.1  希尔伯特空间
        D.2  内积矩阵与距离矩阵
        D.3  核函数的判定条件
      附录E  张量分析浅尝
        E.1  张量的定义
        E.2  张量的代数运算
        E.3  张量场
        E.4  曲线坐标
      附录F  参考文献
      附录G  符号表
      附录H  名词索引
        H.1  术语索引
        H.2  人名索引