欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 生成式AI的提示工程(影印版)(英文版)
      • 作者:(美)詹姆斯·菲尼克斯//迈克·泰勒|责编:张烨
      • 出版社:东南大学
      • ISBN:9787576617634
      • 出版日期:2025/02/01
      • 页数:401
    • 售价:75.2
  • 内容大纲

        ChatGPT和DALL-E这样的大语言模型(LLM)和扩散模型拥有前所未有的潜力。通过使用互联网上的公共文本和图像进行训练,这些模型能够为各种任务提供帮助。而且,随着准入门槛的显著降低,几乎任何开发人员都可以利用AI模型来解决以前不适合自动化的问题。
        借助本书,你将在生成式人工智能方面打下坚实的基础,学会如何在实践中应用这些模型。在将大语言模型和扩散模型集成到工作流中时,大多数开发人员很难获得可用于自动化系统的可靠结果。作者James Phoenix和Mike Taylor展示了如何通过提示工程原则在生产过程中有效使用AI。
  • 作者介绍

  • 目录

    Preface
    1. The Five Principles of Prompting
      Overview of the Five Principles of Prompting
      1. Give Direction
      2. Specify Format
      3. Provide Examples
      4. Evaluate Quality
      5. Divide Labor
      Summary
    2. Introduction to Large Language Models for Text Generation
      What Are Text Generation Models?
        Vector Representations: The Numerical Essence of Language
        Transformer Architecture: Orchestrating Contextual Relationships
        Probabilistic Text Generation: The Decision Mechanism
      Historical Underpinnings: The Rise of Transformer Architectures
      OpenAI's Generative Pretrained Transformers
        GPT-3.5-turbo and ChatGPT
      GPT-4
      Google's Gemini
      Meta's Llama and Open Source
      Leveraging Quantization and LoRA
      Mistral
      Anthropic: Claude
      GPT-4V(ision)
      Model Comparison
       Summary
    3. Standard Practices for Text Generation with ChatGPT
      Generating Lists
      Hierarchical List Generation
      When to Avoid Using Regular Expressions
      Generating JSON
        YAML
      Filtering YAML Payloads
      Handling Invalid Payloads in YAML
      Diverse Format Generation with ChatGPT
        Mock CSV Data
      Explain It like I'm Five
      Universal Translation Through LLMs
      Ask for Context
      Text Style Unbundling
      Identifying the Desired Textual Features
      Generating New Content with the Extracted Features
      Extracting Specific Textual Features with LLMs
      Summarization
      Summarizing Given Context Window Limitations
      Chunking Text
        Benefits of Chunking Text
        Scenarios for Chunking Text
        Poor Chunking Example
      Chunking Strategies

      Sentence Detection Using SpaCy
      Building a Simple Chunking Algorithm in Python
      Sliding Window Chunking
      Text Chunking Packages
      Text Chunking with Tiktoken
      Encodings
        Understanding the Tokenization of Strings
      Estimating Token Usage for Chat API Calls
      Sentiment Analysis
        Techniques for Improving Sentiment Analysis
        Limitations and Challenges in Sentiment Analysis
      Least to Most
        Planning the Architecture
        Coding Individual Functions
        Adding Tests
        Benefits of the Least to Most Technique
        Challenges with the Least to Most Technique
      Role Prompting
      Benefits of Role Prompting
      Challenges of Role Prompting
      When to Use Role Prompting
      GPT Prompting Tactics
        Avoiding Hallucinations with Reference
        Give GPTs "Thinking Time"
        The Inner Monologue Tactic
        Self-Eval LLM Responses
      Classification with LLMs
      Building a Classification Model
      Majority Vote for Classification
      Criteria Evaluation
      Meta Prompting
      Summary
    4. Advanced Techniques for Text Generation with LangChain
      Introduction to LangChain
        Environment Setup
      Chat Models
      Streaming Chat Models
       Creating Multiple LLM Generations
      LangChain Prompt Templates
      LangChain Expression Language (LCEL)
      Using PromptTemplate with Chat Models
      Output Parsers
      LangChain Evals
      OpenAI Function Calling
      Parallel Function Calling
      Function Calling in LangChain
      Extracting Data with LangChain
      Query Planning
      Creating Few-Shot Prompt Templates
        Fixed-Length Few-Shot Examples

        Formatting the Examples
        Selecting Few-Shot Examples by Length
      Limitations with Few-Shot Examples
      Saving and Loading LLM Prompts
      Data Connection
      Document Loaders
      Text Splitters
      Text Splitting by Length and Token Size
      Text Splitting with Recursive Character Splitting
      Task Decomposition
      Prompt Chaining
        Sequential Chain
        itemgetter and Dictionary Key Extraction
        Structuring LCEL Chains
        Document Chains
        Stuff
        Refine
        Map Reduce
        Map Re-rank
      Summary
    5. Vector Databases with FAISS and Pinecone
      Retrieval Augmented Generation (RAG)
      Introducing Embeddings
      Document Loading
      Memory Retrieval with FAISS
      RAG with LangChain
      Hosted Vector Databases with Pinecone
      Self-Querying
      Alternative Retrieval Mechanisms
      Summary
    6. Autonomous Agents with Memory and Tools
      Chain-of-Thought
      Agents
        Reason and Act (ReAct)
        Reason and Act Implementation
        Using Tools
      Using LLMs as an API (OpenAI Functions)
      Comparing OpenAI Functions and ReAct
        Use Cases for OpenAI Functions
        ReAct
        Use Cases for ReAct
      Agent Toolkits
      Customizing Standard Agents
      Custom Agents in LCEL
      Understanding and Using Memory
        Long-Term Memory
        Short-Term Memory
        Short-Term Memory in QA Conversation Agents
      Memory in LangChain
        Preserving the State

        Querying the State
        ConversationBufferMemory
      Other Popular Memory Types in LangChain
        ConversationBufferWindowMemory
        ConversationSummaryMemory
        ConversationSummaryBufferMemory
        ConversationTokenBufferMemory
      OpenAI Functions Agent with Memory
      Advanced Agent Frameworks
        Plan-and-Execute Agents
        Tree of Thoughts
      Callbacks
        Global (Constructor) Callbacks
        Request-Specific Callbacks
        The Verbose Argument
        When to Use Which?
        Token Counting with LangChain
      Summary
    7. Introduction to Diffusion Models for Image Generation
      OpenAI DALL-E
      Midjourney
      Stable Diffusion
      Google Gemini
      Text to Video
      Model Comparison
      Summary
    8. Standard Practices for image Generation with Midjourney
      Format Modifiers
      Art Style Modifiers
      Reverse Engineering Prompts
      Quality Boosters
      Negative Prompts
      Weighted Terms
      Prompting with an Image
      Inpainting
      Outpainting
      Consistent Characters
      Prompt Rewriting
      Meme Unbundling
      Meme Mapping
      Prompt Analysis
      Summary
    9. Advanced Techniques for Image Generation with Stable Diffusion
      Running Stable Diffusion
      AUTOMATIC1111 Web User Interface
      Img2Img
      Upscaling Images
      Interrogate CLIP
      SD Inpainting and Outpainting
      ControlNet

      Segment Anything Model (SAM)
      DreamBooth Fine-Tuning
      Stable Diffusion XL Refiner
      Summary
    10. Building AI-Powered Applications
      AI Blog Writing
      Topic Research
      Expert Interview
      Generate Outline
      Text Generation
      Writing Style
      Title Optimization
      AI Blog Images
      User Interface
      Summary
    Index