-
内容大纲
本书展示了一种替代方法在高能天体物理学中的实际应用。在高能天体物理过程中,单次碰撞伴随着许多具有不同性质的二次粒子的出现。要描述这样一个系统在测量时刻的无穷小演化,就像推导具有守恒粒子数的系统的动力学方程时通常做的那样,必须知道它的开始阶段或者多粒子分布的无限族。另一种方法是使用伴随(在拉格朗日的意义上)数学形式,其中主动自变量是产生级联的初级粒子的相位,而因变量的形式是整个级联的函数,被解释为一些不一定是线性(加性)检测器的读数。这种方法的优点是数学效率:无论级联中形成多少个粒子,所需函数的有效自变量总是一个粒子。第二个优点是它的通用性:探测器的读数形式化,通过级联的随机实现功能进行实际测量,使其能够应用于广泛的实际使用的设备和装置。
读者将能够在该领域的最新发展背景下掌握粒子天体物理学的基本原理。它将使研究生和研究人员都受益,为他们提供设计和解释自己的实验所需的知识和工具,并最终解决最近研究中出现的一些关于宇宙粒子性质和起源的问题。 -
作者介绍
弗拉基米尔·V.尤查金,Vladimir V.Uchaikin教授是著名的俄罗斯科学家,俄罗斯自然科学院院士,已发表300多篇论文并出版10多部著作。 -
目录
1. Introduction
References
2. Basic Concepts of Cascade Theory
2.1 The General Scheme of the Cascade Process
2.2 Mathematical Expectation of a Measurand
2.3 Multiparticle Densities
2.4 Fluctuations of a Functional from a Random Measure
2.5 Characteristic and Generating Functionals
2.6 Interrelations Between Multiparticle Densities
References
3. Forward (Basic) Equation for CP
3.1 The Generating Functional
3.2 Equations for GF
3.3 One-Particle Direct Equations
3.4 Multiparticle Direct Equations
3.5 Green’s Function
3.6 The Diagrammatic Representation
3.7 Dynamics of Correlation Forms
References
4. Backward (Adjoint) Equation
4.1 Processes with a Single-Particle Initial State
4.2 Backward Equations for GFs and Multiparticle Densities
4.3 Multiparticle Importance Functions
4.4 Adjoint Equations and Adjoint Functions
4.5 The Perturbation Theory
4.6 Fluctuations and Correlations in Linear Functionals
4.7 Equations for Moments and Distribution of a Linear Functional
4.8 Fluctuations in an Arbitrary Additive Functional
References
5. Electrons and Photons
5.1 Photon Birth (Classical Sketch)
5.2 Electromagnetic Field Operators
5.3 Bremsstrahlung (Quantum Sketch)
5.4 Compton Scattering
5.5 Photo Absorption and Pair Production
5.6 Continuous Energy Loss Model
5.7 Electron Multiple Scattering
5.7.1 Energy Losses and Straggling (After Bohr)
5.7.2 Fluctuations in Energy Losses (After Landau)
5.7.3 The Linked Generalized Limit Theorem
5.7.4 The Angular Distribution (After Fermi)
5.8 Electron-Photon Cascades
5.9 Cascade Equations in Mellin’s Transforms
References
6. Analytical Theory
6.1 Basic Equation of EPC Theory
6.2 Cascade Curves
6.2.1 Electron Cascade Curve (From Primary Electron)
6.2.2 Electron Cascade Curve (From Primary Photon)
6.3 Degradation Spectrum Problem
6.3.1 Electron Energy Degradation Spectrum
6.3.2 Photon Energy Degradation Spectrum
6.3.3 On Accuracy of Degradation Spectra
6.4 Longitudinal Moment Method
6.4.1 Cascade Curve Phenomenology
6.4.2 Cascade Curves’ Reconstruction
6.5 Including Electron Scattering
6.6 Beyond Small-Angle Approximation
6.7 Nishimura-Kamata Theory
References
7. SBCE Method
7.1 Lagrange Polynomial Interpolation
7.2 Straight-Ahead Equation System
7.3 Solving Straight-Ahead System
7.4 Integral Terms in SBCE for Statistical Moments
7.5 Some Details in Bremsstrahlung Term
7.6 The SBCE Results Review
7.6.1 The Total Electron Trace Length in an Infinite Medium
7.6.2 Cascade Curves
7.6.3 Particle Number Fluctuations
7.6.4 Cherenkov Radiation in Atmosphere
7.6.5 LPM Effect
7.7 Small-Angle Approximation
7.8 Angular Electron Distributions
7.9 Lateral Electron Distribution
References
8. Statistical Fluctuations in EPC
8.1 Fluctuations in Electron Number
8.2 The Electrons Total Trace Length
8.3 Fluctuations of Electron Path in a Layer
8.4 On the First Free Path in EPC Fluctuations
8.5 Random Moments Method (Longitudinal Development)
8.5.1 Fluctuations in Cascade Curves
8.5.2 Correlations in Cascade Curves
8.5.3 Moment Covariance Matrix Equation
8.5.4 Some Parameter Estimations
8.5.5 On the Detector Reading Probability Distribution
8.6 Transverse Randomness
References
9. Cascades in Calorimeters
9.1 The Transition Effects
9.2 The Perturbation Theory Formulas
9.3 Adjoint Functions for Transition Effect
9.4 Flux Perturbation by Boundaries
9.5 Belenky’s Comment of the Transition Effect
9.6 Transition Effect at Shower Maximum
9.7 Total Particle Flux at a Boundary
9.8 Scintillation and Ionization Chambers
9.9 Transition Effect in Electromagnetic Calorimetry
9.10 Determination of the π-Meson Beam Composition
References
10. Monte Carlo Modeling
10.1 Introduction
10.2 Random Numbers
10.3 Non-branching Trajectory in a Homogeneous Medium
10.4 The Measured Characteristics of Particle Transport
10.5 Non-analog Simulation of Detector Response
10.6 Non-analog Simulation of Trajectories
10.7 The Variance of Estimators
10.8 Examples of Weight MC Modifications
10.9 Weighting Estimation of Correlations in Branching Processes
10.9.1 Equations for the Distribution Function and Its Moments
10.9.2 The First Moment Modified Estimation
10.9.3 Some Examples
10.9.4 The Modified Estimation of the Second Moment
10.10 AEGIS Code
References
11. Stochastic Phenomenology of EAS
11.1 EAS Structure
11.2 Multiple Process Models
11.3 Parametric Sensitivity Analysis
11.4 Functional Sensitivity Analysis
11.5 Solving Equations for Second Moments
11.6 EAS Covariance Matrix
11.7 Inelasticity and Multiplicity Fluctuations
11.8 Two-Component Model of Fluctuations
References
12. Cherenkov Radiation of EPC
12.1 Radiation in a Homogeneous Medium (B-Approximation)
12.2 Cherenkov Radiation in Water (Monte Carlo)
12.3 Cherenkov Radiation in Atmosphere
12.4 ALTAI Code
12.4.1 Electromagnetic Cascade
12.4.2 Emission of Cherenkov Light
12.4.3 Hadron-Nuclei Cascade
12.4.4 Nucleus-Nucleus Interactions
12.4.5 Comparison with Other Codes and Data
12.5 Semianalytical Monte Carlo Method
12.5.1 The SAMC Philosophy
12.5.2 Equations for Equivalent Sources
12.5.3 Sampling From the Equivalent Source
12.5.4 Primary-Energy Correction
12.5.5 The SAMC Errors and CTMC Estimation
12.6 The Lateral Light Distribution
12.7 Fluctuations in the Cherenkov Light Amplitude
12.8 Time Structure of the Cherenkov Signal
12.9 Cherenkov Image of EPC
References
13. Relativistic EPC in Intergalactic Medium
13.1 Introduction
13.2 The Ivanenko-Sizov Theory
13.3 EPC From Monoenergetic Source
13.4 EPC in Monochromatic Photon Field
13.5 Variational Analysis
13.6 EPC in Magnetic Fields
References
14. Cascade Ages, Similarity, Universality, and All That
14.1 Longitudinal Parameterizations and Uncertainties
14.2 EAS with Respect to the Shower Age
14.3 Lateral Distribution Fitting
14.4 The TAP-LAP Analysis
14.5 Space-Time Similarity Relations in Inclined Air Showers
References
Appendix A: Method of Integral Transformations
Appendix B: An Excerpt From Ivanenko-Roganova Book
Appendix C: A Few Images From Prof. Ivanenko Scientific Group Archiv
Index
Author Index
同类热销排行榜
- 故宫日历(公历2017年)(精)26.4
- 时间简史(插图版)18
- 工程数学线性代数(第6版十二五普通高等教育本科国家级规划教材)7.76
- 昆虫记(精)/经典译林8.72
- 数控铣床综合实训教程19.2
- 昆虫记(插图典藏本)(精)11.2
- 化工制图习题集(普通高等教育规划教材)7.2
- 化工制图(普通高等教育规划教材)15.8
- 生命急救技能14
- 时间简史(普及版)(精)15.2
推荐书目
-

孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...
-

时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...
-

本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...
[
