-
内容大纲
基础模型开启了众多全新的AI应用场景,降低了构建AI产品的门槛。这将AI从一门晦涩难懂的学科转变为一种强大的开发工具,即使是没有AI经验的人也能使用。
在这本通俗易懂的指南中,作者Chip Huyen探讨了AI工程的概念:利用现成的基础模型构建应用的过程。AI应用开发者将学习如何驾驭人工智能领域,包括模型、数据集、评估基准以及看似无穷无尽的应用模式。书中还介绍了一个用于开发AI应用并高效部署的实用框架。
理解AI工程的概念及其与传统机器学习工程的区别。
学习AI应用的开发过程,了解每个步骤中的挑战及其解决方法。
探索各种模型适配技术,包括提示工程、RAG、微调、智能体以及数据集工程,并理解其原理及应用场景。
分析基础模型在延迟和成本方面的瓶颈,学习克服这些问题的方法。
根据需求选择合适的模型、评估指标、数据、开发模式。 -
作者介绍
奇普·胡岩(Chip Huyen)是实时机器学习平台Claypot AI的联合创始人。在NVIDIA、Netflix和Snorkel AI工作期间,她帮助多家大型机构开发和部署了机器学习系统。这本书是基于她在斯坦福大学教授的机器学习系统设计课程(CS 239S)撰写的。 -
目录
Preface
1. Introduction to Building AI Applications with Foundation Models
The Rise of AI Engineering
From Language Models to Large Language Models
From Large Language Models to Foundation Models
From Foundation Models to AI Engineering
Foundation Model Use Cases
Coding
Image and Video Production
Writing
Education
Conversational Bots
Information Aggregation
Data Organization
Workflow Automation
Planning AI Applications
Use Case Evaluation
Setting Expectations
Milestone Planning
Maintenance
The AI Engineering Stack
Three Layers of the AI Stack
AI Engineering Versus ML Engineering
AI Engineering Versus Full Stack Engineering
Summary
2. Understanding Foundation Models
Training Data
Multilingual Models
Domain Specific Models
Modeling
Model Architecture
Model Size
Post Training
Supervised Finetuning
Preference Finetuning
Sampling
Sampling Fundamentals
Sampling Strategies
Test Time Compute
Structured Outputs
The Probabilistic Nature of AI
Summary
3. Evaluation Methodology
Challenges of Evaluating Foundation Models
Understanding Language Modeling Metrics
Entropy
Cross Entropy
Bits per Character and Bits per Byte
Perplexity
Perplexity Interpretation and Use Cases
Exact Evaluation
Functional Correctness
Similarity Measures Against Reference Data
Introduction to Embedding
AI as a Judge
Why AI as a Judge?
How to Use AI as a Judge
Limitations of AI as a Judge
What Models Can Act as Judges?
Ranking Models with Comparative Evaluation
Challenges of Comparative Evaluation
The Future of Comparative Evaluation
Summary
4. Evaluate AI Systems
Evaluation Criteria
Domain Specific Capability
Generation Capability
Instruction Following Capability
Cost and Latency
Model Selection
Model Selection Workflow
Model Build Versus Buy
Navigate Public Benchmarks
Design Your Evaluation Pipeline
Step 1. Evaluate All Components in a System
Step 2. Create an Evaluation Guideline
Step 3. Define Evaluation Methods and Data
Summary
5. Prompt Engineering
Introduction to Prompting
In Context Learning: Zero Shot and Few Shot
System Prompt and User Prompt
Context Length and Context Efficiency
Prompt Engineering Best Practices
Write Clear and Explicit Instructions
Provide Sufficient Context
Break Complex Tasks into Simpler Subtasks
Give the Model Time to Think
Iterate on Your Prompts
Evaluate Prompt Engineering Tools
Organize and Version Prompts
Defensive Prompt Engineering
Proprietary Prompts and Reverse Prompt Engineering
Jailbreaking and Prompt Injection
Information Extraction
Defenses Against Prompt Attacks
Summary
6. RAG and Agents
RAG
RAG Architecture
Retrieval Algorithms
Retrieval Optimization
RAG Beyond Texts
Agents
Agent Overview
Tools
Planning
Agent Failure Modes and Evaluation
Memory
Summary
7. Finetuning
Finetuning Overview
When to Finetune
Reasons to Finetune
Reasons Not to Finetune
Finetuning and RAG
Memory Bottlenecks
Backpropagation and Trainable Parameters
Memory Math
Numerical Representations
Quantization
Finetuning Techniques
Parameter Efficient Finetuning
Model Merging and Multi Task Finetuning
Finetuning Tactics
Summary
8. Dataset Engineering
Data Curation
Data Quality
Data Coverage
Data Quantity
Data Acquisition and Annotation
Data Augmentation and Synthesis
Why Data Synthesis
Traditional Data Synthesis Techniques
AI Powered Data Synthesis
Model Distillation
Data Processing
Inspect Data
Deduplicate Data
Clean and Filter Data
Format Data
Summary
9. Inference Optimization
Understanding Inference Optimization
Inference Overview
Inference Performance Metrics
AI Accelerators
Inference Optimization
Model Optimization
Inference Service Optimization
Summary
10. AI Engineering Architecture and User Feedback
AI Engineering Architecture
Step 1. Enhance Context
Step 2. Put in Guardrails
Step 3. Add Model Router and Gateway
Step 4. Reduce Latency with Caches
Step 5. Add Agent Patterns
Monitoring and Observability
AI Pipeline Orchestration
User Feedback
Extracting Conversational Feedback
Feedback Design
Feedback Limitations
Summary
Epilogue
Index
同类热销排行榜
- C语言与程序设计教程(高等学校计算机类十二五规划教材)16
- 电机与拖动基础(教育部高等学校自动化专业教学指导分委员会规划工程应用型自动化专业系列教材)13.48
- 传感器与检测技术(第2版高职高专电子信息类系列教材)13.6
- ASP.NET项目开发实战(高职高专计算机项目任务驱动模式教材)15.2
- Access数据库实用教程(第2版十二五职业教育国家规划教材)14.72
- 信号与系统(第3版下普通高等教育九五国家级重点教材)15.08
- 电气控制与PLC(普通高等教育十二五电气信息类规划教材)17.2
- 数字电子技术基础(第2版)17.36
- VB程序设计及应用(第3版十二五职业教育国家规划教材)14.32
- Java Web从入门到精通(附光盘)/软件开发视频大讲堂27.92
推荐书目
-

孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...
-

时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...
-

本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...
[
