欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • AI工程(影印版)(英文版)
      • 作者:(越)奇普·胡岩|责编:张烨
      • 出版社:东南大学
      • ISBN:9787576620047
      • 出版日期:2025/04/01
      • 页数:509
    • 售价:75.6
  • 内容大纲

        基础模型开启了众多全新的AI应用场景,降低了构建AI产品的门槛。这将AI从一门晦涩难懂的学科转变为一种强大的开发工具,即使是没有AI经验的人也能使用。
        在这本通俗易懂的指南中,作者Chip Huyen探讨了AI工程的概念:利用现成的基础模型构建应用的过程。AI应用开发者将学习如何驾驭人工智能领域,包括模型、数据集、评估基准以及看似无穷无尽的应用模式。书中还介绍了一个用于开发AI应用并高效部署的实用框架。
        理解AI工程的概念及其与传统机器学习工程的区别。
        学习AI应用的开发过程,了解每个步骤中的挑战及其解决方法。
        探索各种模型适配技术,包括提示工程、RAG、微调、智能体以及数据集工程,并理解其原理及应用场景。
        分析基础模型在延迟和成本方面的瓶颈,学习克服这些问题的方法。
        根据需求选择合适的模型、评估指标、数据、开发模式。
  • 作者介绍

        奇普·胡岩(Chip Huyen)是实时机器学习平台Claypot AI的联合创始人。在NVIDIA、Netflix和Snorkel AI工作期间,她帮助多家大型机构开发和部署了机器学习系统。这本书是基于她在斯坦福大学教授的机器学习系统设计课程(CS 239S)撰写的。
  • 目录

    Preface
    1. Introduction to Building AI Applications with Foundation Models
      The Rise of AI Engineering
      From Language Models to Large Language Models
      From Large Language Models to Foundation Models
      From Foundation Models to AI Engineering
      Foundation Model Use Cases
        Coding
        Image and Video Production
        Writing
        Education
        Conversational Bots
        Information Aggregation
        Data Organization
        Workflow Automation
        Planning AI Applications
        Use Case Evaluation
        Setting Expectations
        Milestone Planning
        Maintenance
        The AI Engineering Stack
          Three Layers of the AI Stack
          AI Engineering Versus ML Engineering
          AI Engineering Versus Full Stack Engineering
        Summary
    2. Understanding Foundation Models
      Training Data
      Multilingual Models
      Domain Specific Models
      Modeling
        Model Architecture
        Model Size
      Post Training
        Supervised Finetuning
        Preference Finetuning
        Sampling
          Sampling Fundamentals
          Sampling Strategies
          Test Time Compute
          Structured Outputs
          The Probabilistic Nature of AI
        Summary
    3. Evaluation Methodology
      Challenges of Evaluating Foundation Models
      Understanding Language Modeling Metrics
        Entropy
        Cross Entropy
        Bits per Character and Bits per Byte
        Perplexity
        Perplexity Interpretation and Use Cases

        Exact Evaluation
        Functional Correctness
        Similarity Measures Against Reference Data
        Introduction to Embedding
        AI as a Judge
          Why AI as a Judge?
          How to Use AI as a Judge
          Limitations of AI as a Judge
          What Models Can Act as Judges?
          Ranking Models with Comparative Evaluation
          Challenges of Comparative Evaluation
          The Future of Comparative Evaluation
        Summary
    4. Evaluate AI Systems
      Evaluation Criteria
        Domain Specific Capability
        Generation Capability
        Instruction Following Capability
        Cost and Latency
      Model Selection
        Model Selection Workflow
        Model Build Versus Buy
        Navigate Public Benchmarks
        Design Your Evaluation Pipeline
          Step 1. Evaluate All Components in a System
          Step 2. Create an Evaluation Guideline
          Step 3. Define Evaluation Methods and Data
        Summary
    5. Prompt Engineering
      Introduction to Prompting
      In Context Learning: Zero Shot and Few Shot
      System Prompt and User Prompt
      Context Length and Context Efficiency
      Prompt Engineering Best Practices
        Write Clear and Explicit Instructions
        Provide Sufficient Context
        Break Complex Tasks into Simpler Subtasks
        Give the Model Time to Think
        Iterate on Your Prompts
        Evaluate Prompt Engineering Tools
        Organize and Version Prompts
        Defensive Prompt Engineering
        Proprietary Prompts and Reverse Prompt Engineering
        Jailbreaking and Prompt Injection
        Information Extraction
        Defenses Against Prompt Attacks
        Summary
    6. RAG and Agents
      RAG
        RAG Architecture

        Retrieval Algorithms
        Retrieval Optimization
        RAG Beyond Texts
      Agents
        Agent Overview
        Tools
        Planning
        Agent Failure Modes and Evaluation
        Memory
        Summary
    7. Finetuning
      Finetuning Overview
      When to Finetune
      Reasons to Finetune
      Reasons Not to Finetune
      Finetuning and RAG
      Memory Bottlenecks
      Backpropagation and Trainable Parameters
      Memory Math
      Numerical Representations
      Quantization
      Finetuning Techniques
      Parameter Efficient Finetuning
      Model Merging and Multi Task Finetuning
      Finetuning Tactics
      Summary
    8. Dataset Engineering
      Data Curation
      Data Quality
      Data Coverage
      Data Quantity
      Data Acquisition and Annotation
      Data Augmentation and Synthesis
        Why Data Synthesis
        Traditional Data Synthesis Techniques
        AI Powered Data Synthesis
      Model Distillation
      Data Processing
        Inspect Data
        Deduplicate Data
        Clean and Filter Data
        Format Data
      Summary
    9. Inference Optimization
      Understanding Inference Optimization
      Inference Overview
      Inference Performance Metrics
      AI Accelerators
      Inference Optimization
        Model Optimization

        Inference Service Optimization
      Summary
    10. AI Engineering Architecture and User Feedback
      AI Engineering Architecture
        Step 1. Enhance Context
        Step 2. Put in Guardrails
        Step 3. Add Model Router and Gateway
        Step 4. Reduce Latency with Caches
        Step 5. Add Agent Patterns
        Monitoring and Observability
        AI Pipeline Orchestration
      User Feedback
        Extracting Conversational Feedback
        Feedback Design
        Feedback Limitations
      Summary
    Epilogue
    Index