欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 机器学习生产系统(影印版)(英文版)
      • 作者:(美)Robert Crowe//Hannes Hapke//Emily Caveness//Di Zhu|责编:张烨
      • 出版社:东南大学
      • ISBN:9787576620054
      • 出版日期:2025/04/01
      • 页数:445
    • 售价:66.8
  • 内容大纲

        机器学习(ML)和人工智能(AI)领域正在蓬勃发展,几乎每天都有新的研究、模型和技术出现。面对如此丰富的选择,数据科学家、机器学习工程师和软件开发人员很容易迷失在将AI/ML模型从实验阶段推向生产的众多步骤中。
        这本实用书籍专注于生产环境机器学习,指导你将ML模型转化为可行的产品和应用。生产环境机器学习涵盖了ML的所有领域,不仅限于简单的模型训练。本书特别强调了ML流水线,帮助你为ML生产系统奠定基础。
        你即将开启探索之旅,学习将ML应用投入生产所需的广泛技术,以及需要考虑的问题和方法。关键的ML工程主题包括:
        ·数据收集、验证、存储、特征工程
        ·模型分析、服务、监控、日志记录
        ·使用TensorFlow Extended(TFX)和其他工具编排机器学习流水线
        本书提供了深入的实例,包括适用于自然语言处理(NLP)和计算机视觉模型的端到端机器学习流水线。
  • 作者介绍

  • 目录

    Foreword
    Preface
    1. Introduction to Machine Learning Production Systems
      What Is Production Machine Learning?
      Benefits of Machine Learning Pipelines
      Focus on Developing New Models, Not on Maintaining Existing Models
      Prevention of Bugs
      Creation of Records for Debugging and Reproducing Results
      Standardization
      The Business Case for ML Pipelines
      When to Use Machine Learning Pipelines
      Steps in a Machine Learning Pipeline
      Data Ingestion and Data Versioning
      Data Validation
      Feature Engineering
      Model Training and Model Tuning
      Model Analysis
      Model Deployment
      Looking Ahead
    2. Collecting, Labeling, and Validating Data
      Important Considerations in Data Collection
      Responsible Data Collection
      Labeling Data: Data Changes and Drift in Production ML
      Labeling Data: Direct Labeling and Human Labeling
      Validating Data: Detecting Data Issues
      Validating Data: TensorFlow Data Validation
      Skew Detection with TFDV
      Types of Skew
      Example: Spotting Imbalanced Datasets with TensorFlow Data Validation
      Conclusion
    3. Feature Engineering and Feature Selection
      Introduction to Feature Engineering
      Preprocessing Operations
      Feature Engineering Techniques
        Normalizing and Standardizing
        Bucketing
        Feature Crosses
        Dimensionality and Embeddings
        Visualization
        Feature Transformation at Scale
        Choose a Framework That Scales Well
        Avoid Training–Serving Skew
        Consider Instance Level Versus Full Pass Transformations
        Using TensorFlow Transform
        Analyzers
        Code Example
      Feature Selection
        Feature Spaces
        Feature Selection Overview
        Filter Methods

        Wrapper Methods
        Embedded Methods
        Feature and Example Selection for LLMs and GenAI
        Example: Using TF Transform to Tokenize Text
        Benefits of Using TF Transform
        Alternatives to TF Transform
        Conclusion
    4. Data Journey and Data Storage
      Data Journey
      ML Metadata
      Using a Schema
      Schema Development
      Schema Environments
      Changes Across Datasets
      Enterprise Data Storage
        Feature Stores
        Data Warehouses
        Data Lakes
        Conclusion
    5. Advanced Labeling, Augmentation, and Data Preprocessing
      Advanced Labeling
        Semi Supervised Labeling
        Active Learning
        Weak Supervision
        Advanced Labeling Review
      Data Augmentation
        Example: CIFAR 10
        Other Augmentation Techniques
        Data Augmentation Review
      Preprocessing Time Series Data: An Example
        Windowing
        Sampling
        Conclusion
    6. Model Resource Management Techniques
      Dimensionality Reduction: Dimensionality Effect on Performance
        Example: Word Embedding Using Keras
        Curse of Dimensionality
        Adding Dimensions Increases Feature Space Volume
        Dimensionality Reduction
      Quantization and Pruning
        Mobile, IoT, Edge, and Similar Use Cases
        Quantization
        Optimizing Your TensorFlow Model with TF Lite
        Optimization Options
        Pruning
      Knowledge Distillation
        Teacher and Student Networks
        Knowledge Distillation Techniques
        TMKD: Distilling Knowledge for a Q&A Task
        Increasing Robustness by Distilling EfficientNets

        Conclusion
    7. High-Performance Modeling.
    8. Model Analysis.
    9. Interpretability
    10. Neural Architecture Search
    11. Introduction to Model Serving
    12. Model Servincl Patterns
    13. Model Serving Infrastructure
    14. Model Serving Examples
    15. Model Manaqement and Delivery
    16. Model Monitoring and Logging
    17. Privacy and Legal Requirements
    18. Orchestrating Machine Learning Pipelines
    19. AdvancedTFX
    20. ML Pipelines for Computer Vision Problems.
    21. ML Pipelines for Natural Language Processing
    22. Generative AI
    23. The Future of Machine Learning Production Systems and Next Steps
    Index