-
内容大纲
通过这本实用的动手指南,你可以学习如何使用生成式AI技术创造全新的文本、图像、音频,甚至音乐。你将了解最先进的生成模型的工作原理,学习如何根据需求对其进行微调和适配,以及如何组合现有的构建模块来创造新的模型和进行不同领域的创意应用。
这本入门书从理论概念着手,然后指导读者开展实际应用,并提供了大量代码示例和易懂的插图。你将学习如何使用开源库来利用transformer和扩散模型进行代码探索,并研究若干现有项目来帮助指导你的工作实践。
构建和自定义能够生成文本和图像的模型。
探索使用预训练模型与微调自定义模型之间的权衡。
创建并使用能够以任意风格生成、编辑、修改图像的模型。
定制transformer和扩散模型以满足多种创意需求。
训练能够反映个人独特风格的模型。 -
作者介绍
-
目录
Table of Contents
Preface
Part I. Leveraging Open Models
1. An Introduction to Generative Media
Generating Images
Generating Text
Generating Sound Clips
Ethical and Societal Implications
Where We've Been and Where Things Stand
How Are Generative AI Models Created?
Summary
2. Transformers
A Language Model in Action
Tokenizing Text
Predicting Probabilities
Generating Text
Zero Shot Generalization
Few Shot Generalization
A Transformer Block
Transformer Model Genealogy
Sequence to Sequence Tasks
Encoder Only Models
The Power of Pretraining
Transformers Recap
Limitations
Beyond Text
Project Time: Using LMs to Generate Text
Summary
Exercises
Challenges
References
3. Compressing and Representing Information
AutoEncoders
Preparing the Data
Modeling the Encoder
Decoder
Training
Exploring the Latent Space
Visualizing the Latent Space
Variational AutoEncoders
VAE Encoders and Decoders
Sampling from the Encoder Distribution
Training the VAE
VAEs for Generative Modeling
CLIP
Contrastive Loss
Using CLIP, Step by Step
Zero Shot Image Classification with CLIP
Zero Shot Image Classification Pipeline
CLIP Use Cases
Alternatives to CLIP
Project Time: Semantic Image Search
Summary
Exercises
Challenges
References
4. Diffusion Models
The Key Insight: Iterative Refinement
Training a Diffusion Model
The Data
Adding Noise
The UNet
Training
Sampling
Evaluation
In Depth: Noise Schedules
Why Add Noise?
Starting Simple
The Math
Effect of Input Resolution and Scaling
In Depth: UNets and Alternatives
A Simple UNet
Improving the UNet
Alternative Architectures
In Depth: Diffusion Objectives
Project Time: Train Your Diffusion Model
Summary
Exercises
Challenges
References
5. Stable Diffusion and Conditional Generation
Adding Control: Conditional Diffusion Models
Preparing the Data
Creating a Class Conditioned Model
Training the Model
Sampling
Improving Efficiency: Latent Diffusion
Stable Diffusion: Components in Depth
The Text Encoder
The Variational AutoEncoder
The UNet
Stable Diffusion XL
FLUX, SD3, and Video
Classifier Free Guidance
Putting It All Together: Annotated Sampling Loop
Open Data, Open Models
Challenges and the Sunset of LAION 5B
Alternatives
Fair and Commercial Use
Project Time: Build an Interactive ML Demo with Gradio
Summary
Exercises
Challenge
References
Part II. Transfer Learning for Generative Models
6. Fine Tuning Language Models
Classifying Text
Identify a Dataset
Define Which Model Type to Use
Select a Good Base Model
Preprocess the Dataset
Define Evaluation Metrics
Train the Model
Still Relevant?
Generating Text
Picking the Right Generative Model
Training a Generative Model
Instructions
A Quick Introduction to Adapters
A Light Introduction to Quantization
Putting It All Together
A Deeper Dive into Evaluation
Project Time: Retrieval Augmented Generation
Summary
Exercises
Challenge
References
7. Fine Tuning Stable Diffusion
Full Stable Diffusion Fine Tuning
Preparing the Dataset
Fine Tuning the Model
Inference
DreamBooth
Preparing the Dataset
Prior Preservation
DreamBoothing the Model
Inference
Training LoRAs
Giving Stable Diffusion New Capabilities
Inpainting
Additional Inputs for Special Conditionings
Project Time: Train an SDXL DreamBooth LoRA by Yourself
Summary
Exercises
Challenge
References
Part III. Going Further
8. Creative Applications of Text to Image Models
Image to Image
Inpainting
Prompt Weighting and Image Editing
Prompt Weighting and Merging
Editing Diffusion Images with Semantic Guidance
Real Image Editing via Inversion
Editing with LEDITS++
Real Image Editing via Instruction Fine Tuning
ControlNet
Image Prompting and Image Variations
Image Variations
Image Prompting
Project Time: Your Creative Canvas
Summary
Exercises
References
9. Generating Audio
Audio Data
Waveforms
Spectrograms
Speech to Text with Transformer Based Architectures
Encoder Based Techniques
Encoder Decoder Techniques
From Model to Pipeline
Evaluation
From Text to Speech to Generative Audio
Generating Audio with Sequence to Sequence Models
Going Beyond Speech with Bark
AudioLM and MusicLM
AudioGen and MusicGen
Audio Diffusion and Riffusion
More on Diffusion Models for Generative Audio
Evaluating Audio Generation Systems
What's Next?
Project Time: End to End Conversational System
Summary
Exercises
Challenges
References
10. Rapidly Advancing Areas in Generative AI
Preference Optimization
Long Contexts
Mixture of Experts
Optimizations and Quantizations
Data
One Model to Rule Them All
Computer Vision
3D Computer Vision
Video Generation
Multimodality
Community
A. Open Source Tools
B. LLM Memory Requirements
C. End to End Retrieval Augmented Generation
Index
同类热销排行榜
- C语言与程序设计教程(高等学校计算机类十二五规划教材)16
- 电机与拖动基础(教育部高等学校自动化专业教学指导分委员会规划工程应用型自动化专业系列教材)13.48
- 传感器与检测技术(第2版高职高专电子信息类系列教材)13.6
- ASP.NET项目开发实战(高职高专计算机项目任务驱动模式教材)15.2
- Access数据库实用教程(第2版十二五职业教育国家规划教材)14.72
- 信号与系统(第3版下普通高等教育九五国家级重点教材)15.08
- 电气控制与PLC(普通高等教育十二五电气信息类规划教材)17.2
- 数字电子技术基础(第2版)17.36
- VB程序设计及应用(第3版十二五职业教育国家规划教材)14.32
- Java Web从入门到精通(附光盘)/软件开发视频大讲堂27.92
推荐书目
-

孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...
-

时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...
-

本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...
[
