-
内容大纲
本书共10章。前4章是深度学习的基础,阐述深度学习的概念、算法基础和结构基础以及深度学习环境的配置方法和步骤。后6章是深度学习的实战部分,分别从6个不同的应用领域论述并分析如何通过改造深度学习模型或者利用不同的深度学习模型完成实际的工作任务,最终目的是希望通过这些科研成果与实践案例,使读者能够针对不同领域的科学技术问题逐步获得具有普适意义的工作思路和解决方法。
本书适合希望系统学习深度学习基础知识的初学者使用,也可作为高等院校人工智能、自动化类、电子信息类、机器人工程等相关专业的教学和实践类课程,以及控制科学与工程、电子信息等专业的硕士研究生工程案例教材使用。 -
作者介绍
-
目录
上部 深度学习入门
第1章 深度学习基础
1.1 深度学习的概念
1.1.1 深度学习的发展简史
1.1.2 深度学习的点
1.1.3 深度学习的应用
1.2 经网络的概念
1.2.1 人是如何识别数字的
1.2.2 感知机的提出
1.3 经网络的应用
1.3.1 感知机模型
1.3.2 能够识别数字的经网络
1.4 本章小结与练习
本章练习
参考文献
第2章 深度学习的算法基础——梯度下降法
2.1 梯度下降法的定义
2.2 梯度下降法的类型
2.2.1 批量梯度下降
2.2.2 随机梯度下降
2.2.3 小批量随机梯度下降
2.2.4 动量随机梯度下降
2.3 自适应化算法
2.3.1 AdaGrad算法
2.3.2 RMSProp算法
2.3.3 Adam算法
2.4 本章小结与练习
本章练习
参考文献
第3章 深度学习的结构基础——卷积经网络
3.1 卷积经网络基础
3.1.1 卷积经网络的发展
3.1.2 卷积经网络的组成
3.2 卷积的基本作
3.2.1 互相关运算
3.2.2 征图和感受野
3.3 卷积作中的填充和步长
3.3.1 填充
3.3.2 步长
3.4 多通道输入的卷积与多通道输出
3.4.1 卷积作
3.4.2 多卷积作
3.4.3 多通道输出
3.5 卷积经网络的池化层和全连接层
3.5.1 池化层
3.5.2 全连接层
3.6 本章小结与练习
本章练习
参考文献
第4章 搭建深度学习的运行环境
4.1 安装开源软件和环境管理系统Anaconda
4.1.1 下载Anaconda
4.1.2 安装Anaconda
4.1.3 配置国内的下载源
4.2 配置Anaconda的环境变量
4.3 创建和删除虚拟环境
4.3.1 创建虚拟环境
4.3.2 删除虚拟环境
4.4 安装和配置PyCharm
4.4.1 安装PyCharm
4.4.2 使用PyCharm
4.4.3 添加解释器
4.5 本章小结
下部 深度学习实战
第5章 基于YOLOv8的黄花菜成熟度视觉检测
5.1 数据的采集与处理
5.1.1 数据采集
5.1.2 图像预处理
5.1.3 图像标注
5.2 YOLOv8算法简介
5.2.1 YOLO系列算法的发展历程
5.2.2 YOLOv8算法
5.3 基于YOLOv8的黄花菜成熟度检测实验
5.3.1 搭建实验环境
5.3.2 代码目录结构
5.4 实验过程及其结果
5.4.1 训练网络
5.4.2 测试模型
5.4.3 分析结果
5.5 本章小结与练习
本章练习
参考文献
第6章 基于YOLOv8的带钢表面缺陷视觉检测
6.1 对带钢表面缺陷检测的研究
6.2 数据集的选取及预处理
6.2.1 几类典型的带钢表面缺陷
6.2.2 带钢表面缺陷数据集的选取
6.2.3 数据集标签的转换与增强
6.3 带钢表面缺陷检测模型的训练
6.3.1 模型的训练过程
6.3.2 实验结果与分析
6.4 本章小结与练习
本章练习
参考文献
第7章 基于YOLOv8的不规范驾驶行为检测
7.1 不规范驾驶行为检测的意义和主要研究方法
7.2 网络化与数据集
7.2.1 对YOLOv8的结构改进
7.2.2 数据集的选取与处理
7.3 实验过程及其结果
7.3.1 模型的修改与训练
7.3.2 不规范驾驶行为的检测结果
7.4 本章小结与练习
本章练习
参考文献
第8章 基于深度学习的城市街景语义分割
8.1 语义分割的概念
8.1.1 语义分割的研究
8.1.2 语义分割的常用数据集
8.2 语义分割的常用模型
8.2.1 FCN模型
8.2.2 U-Net模型
8.2.3 SegNet模型
8.2.4 DeepLab模型
8.2.5 PSPNet模型
8.3 城市街景图像的语义分割
8.4 城市街景语义分割模型的训练与实验
8.4.1 数据集和语义分割工具的选取
8.4.2 网络结构及其训练过程
8.4.3 实验验证及其结果
8.5 本章小结与练习
本章练习
参考文献
第9章 基于wespeaker的声纹识别技术
9.1 声纹识别技术概述
9.1.1 声纹识别的发展历程
9.1.2 wespeaker框架的点与势
9.1.3 VoxCeleb数据集概述
9.2 基于wespeaker的声纹识别技术细节
9.2.1 梅尔频率倒谱系数(MFCC)
9.2.2 滤波器组征filterbank
9.2.3 FBank的代码实现
9.3 构建一个简单的基于wespeaker的声纹识别系统
9.3.1 声纹征模型的训练
9.3.2 基于声纹征模型的声纹对比程序
9.3.3 开发声纹识别系统的界面
9.4 本章小结与练习
本章练习
第10章 深度学习在新能源发电预测领域中的应用
10.1 新能源发电预测的基础知识
10.1.1 新能源发电技术及其发展与挑战
10.1.2 构建基于深度学习的新能源功率预测模型
10.2 风力发电功率预测
10.2.1 风力发电原理
10.2.2 构建风力发电功率预测模型
10.3 光伏发电功率预测
10.3.1 光伏发电原理与影响因素
10.3.2 构建光伏发电功率预测模型
10.4 本章小结与练习
本章练习
参考文献
附录 书中的常用词汇中英文对照表
同类热销排行榜
- C语言与程序设计教程(高等学校计算机类十二五规划教材)16
- 电机与拖动基础(教育部高等学校自动化专业教学指导分委员会规划工程应用型自动化专业系列教材)13.48
- 传感器与检测技术(第2版高职高专电子信息类系列教材)13.6
- ASP.NET项目开发实战(高职高专计算机项目任务驱动模式教材)15.2
- Access数据库实用教程(第2版十二五职业教育国家规划教材)14.72
- 信号与系统(第3版下普通高等教育九五国家级重点教材)15.08
- 电气控制与PLC(普通高等教育十二五电气信息类规划教材)17.2
- 数字电子技术基础(第2版)17.36
- VB程序设计及应用(第3版十二五职业教育国家规划教材)14.32
- Java Web从入门到精通(附光盘)/软件开发视频大讲堂27.92
推荐书目
-

孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...
-

时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...
-

本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...
[
