欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 3D数据科学与Python(影印版)(英文版)
      • 作者:(美)弗洛朗·普|责编:张烨
      • 出版社:东南大学
      • ISBN:9787576620030
      • 出版日期:2025/07/01
      • 页数:658
    • 售价:75.2
  • 内容大纲

        我们的物理世界是建立在三维空间之中的。为了创造能够理解并与之交互的技术,我们的数据也必须是三维的。这本实用指南为数据科学家、工程师、研究人员提供了使用Python处理3D数据的实践方法。从3D重建到3D深度学习技术,你将学习如何从海量数据集中提取有价值的洞察,包括点云、体素、3D CAD模型、网格、图像等。
        Florent Poux博士将帮助你借助前沿算法和空间AI模型的潜力,开发以自动化为核心的生产就绪系统(production-ready system)。通过本书,你将习得3D数据科学的知识与代码,实现以下目标:
        理解3D数据的核心概念和表示方法
        使用强大的Python库加载、操作、分析和可视化3D数据
        应用先进的AI算法进行3D模式识别(包括监督与非监督方法)
        使用3D重建技术生成3D数据集
        实现自动化3D建模与生成式AI工作流
        探索在计算机视觉/图形、地理空间情报、科学计算、机器人技术、自动驾驶等领域的实际应用
        构建服务于空间AI解决方案的精准数字环境
  • 作者介绍

        弗洛朗·普是3D数据科学领域的知名专家,常年在欧洲顶尖高校从事教学与研究工作。他还是3D地理数据学院(3D Geodata Academy)的首席教授以及法国Tech 120企业的创新总监。
  • 目录

    Table of Contents
    Foreword
    Preface
    1. Introduction to 3D Data Science
      3D Data Science in Brief
        Dimensions and 3D Data Science
        Spatial AI: From Reality to Virtuality
      3D Data: Fundamental Building Blocks
        Geometry, Topology, and Semantics
        Integrating Geometry, Topology, and Semantics
        Introduction to 3D Point Clouds
      The 3D Data Science Modular Workflow
        Data Acquisition
        Preprocessing
        Registration
        3D Data Classification (Semantic Injection)
        Structuration/Modeling
        3D Data Analysis
        3D Data Visualization
        Application (Software) Development
        The Case for Automation
        Workflow Challenges in 3D Data Science
        3D Data Science in the Industry
        Summary
    2. Resources and Software Essentials
      Fundamental Resources
        Mathematics
        Computer Science
        3D Data Expertise
          Artificial Intelligence for 3D
          Hardware Recommendations for 3D
            Local 3D Development
            Cloud Computing
        Essential Software and Tools for 3D
          3D Reconstruction Software
          3D Data Processing Software
          3D Visualization Software
        Summary
    3. 3D Python and 3D Data Setup
      3D Python Setup and Libraries
        Choice of OS
        Environment Setup
        Base Python Libraries
        3D Python Libraries
        The Python IDE
        Creating a 3D Python Program
        Importing 3D Data in Python
        Extracting Specific Attributes
        Conducting Attribute-based Data Analysis
        3D Data Visualization and Export

      3D Reconstruction Methods
        Real-World 3D Reconstruction (Sensor-Based)
        Creative 3D Reconstruction
      3D Dataset: Curation
        3D Data from Image-based Reconstruction
        Multimodal Web Scraping
        Summary
    4. 3D Data Representation and Structuration
      3D Data Representations
        3D Point Clouds
        Image-based Representations
        Volumetric (Voxel) Models
        High-level 3D Data Representation
        3D Surface Models
      3D Data Canonical Link
        Mesh to Point Cloud
        Voxel to Point Cloud
        Raster to Point Cloud
      3D Data Structures: k-d Trees, Octrees, BVH
        k-d Trees
        Octrees
        File Organization
        Summary
    5. Developing a Multimodal 3D Viewer with Python
      3D Python and Code Setup
      3D Data Curation
      3D Data Preparation
        Initial Profiling
        3D Data Downsampling
        Data Preprocessing
        3D Data Visualization
      Multimodal 3D Experience
        Point of Interest Query
        Manual Boundary Selection
        Find High and Low Points
        Point Cloud Voxelization
        Built Coverage Extraction
        Summary
    6. Point Cloud Data Engineering
      Fundamentals
        Initial Preprocessing
        Feature Extraction Fundamentals
      Strategies for Point Cloud Feature Extraction
        Global Feature Extraction
        Local Feature Extraction
        Principal Component Analysis
        Python and Data Preparation
          Cluster Identification with pandas
          3D Data Normalization
            Extracting the Principal Components

        3D Visualization of PCA
      3D Data Registration: Unifying Perspectives
        3D Data Registration Fundamentals
          Registration Initialization
          Coarse Registration
          Iterative Closest Point
          Fine Registration: ICP
        Summary
    7. Building 3D Analytical Apps
      3D Project Environment Preparation
        Gathering Datasets
        Python and Environment Setup
      3D Data Fundamentals with PyVista
      3D Data Structure Creation (KDTree)
      Covariance Matrix, Eigenvalues, and Eigenvectors
      Planarity, Linearity, Omnivariance, Verticality, Normals
      Neighborhood Definition and Selection
      Automation and Scaling
      Interactive Thresholding
      3D Data Results Export
      Summary
    8. 3D Data Analysis
      Types of 3D Data Analysis
        3D Descriptive Data Analysis
        3D Exploratory Data Analysis
        3D Predictive Data Analysis
        3D Prescriptive Data Analysis
        Additional Considerations
      3D Data Analytical Tools
        Environment and Data Preparation
        Metadata Analysis and Data Profiling
        Geometry and Shape Analysis
        Statistical Analysis
        Attribute Analysis
      3D Diagnostic Tools
        3D Deviation Analysis: Planar Case
        3D Deviation Analysis: Mesh Case
        Summary
    9. 3D Shape Recognition
      RANSAC from Scratch: 3D Planar Shape Recognition
        RANSAC
        Data and Environment Setup
        Geometric Model Selection
        3D Shape Fitting
        Iteration and Function Definition
        Application 1: RANSAC for Segmentation Tasks
        Application 2: RANSAC for Analytical Tasks
        Application 3: RANSAC for Modeling Tasks
      Region Growing for 3D Shape Detection
        Region Growing Principles

        Region Growing: Real-World Setup
        Region Growing: Implementation
        A Hybrid Approach: RANSAC and Region Growing
        Summary
    10. 3D Modeling: Advanced Techniques
      High-Fidelity Meshing
        General Overview of High-Fidelity 3D Meshes
        The Mission
        Data Preparation
        Choose a Meshing Strategy
        Other 3D Meshing Strategies
        3D Meshing with Python
          Levels of Detail Creation
          Visualization and Software
      3D Voxels and Voxelization
        Python Environment Initialization
        Loading the Data
        Creating the Voxel Grid
        Generating the Voxel Cubes (3D Meshes)
        Export the Mesh Object (.ply or.obj)
      Parametric Modeling
        CadQuery and Environment Setup
        I/O for Parametric Models: 2D (DXF) and 3D (STL)
        Parametric Modeling Techniques
          The Boolean Operations
          Modeling Various Pieces
        Conclusion
      Monocular Image-based 3D Modeling: Depth Estimation and Reconstruction
        Setting Up the Environment and Installing the Libraries
        Gathering a Dataset
        Image Preprocessing and Model Setup
        Depth Estimation Predictions from the Model
        Point Cloud Generation
        Defining the Camera Intrinsics
      3D Modeling: 3D Point Cloud to Mesh
      Summary
    11. 3D Building Reconstruction from LiDAR Data
      Phase 1: 3D Python Setup
        Project Environment Setup
        Project Notebook Setup
      Phase 2: Data Preparation
        Aerial LiDAR Data Curation
        Aerial LiDAR Data Preprocessing
      Phase 3: Experiments
        Unsupervised Point Cloud Segmentation
        3D House Segment Isolation
        2D Building Footprint Extraction
        Semantic and Attribute Extraction
          2D to 3D Vectors
        3D Model Creation: Mesh

      Phase 4: Automation and Scaling
      Summary
    12. 3D Machine Learning: Clustering
      Clustering for Unsupervised Segmentation
        Clustering Fundamentals
        Clustering Representativity
        Types of Clustering Algorithms
        k-Means Clustering
          k-Means: Workflow Definition
          3D Python Context Definition
          LiDAR Data Preprocessing
          k-Means Implementation
        DBSCAN for Unsupervised Segmentation
          DBSCAN Principles
          The Strategy
          Experimental Setup
          3D Planar Shape Recognition with RANSAC
          DBSCAN for 3D Point Cloud Segmentation
          The Multi-RANSAC Framework
          Multi-RANSAC Refinement with DBSCAN
          DBSCAN Refinement
        DBSCAN Versus k-Means
        Summary
    13. Graphs and Foundation Models for Unsupervised Segmentation
      Connectivity-based Clustering
        The Mission Brief
        Core Principles
        Step 1: Environment Setup
        Step 2: Graph Theory for 3D Clustering
        Step 3: Graph Analytics
        Step 4: Plotting Graphs (Optional)
        Step 5: Connected Components for Point Clouds
        Step 6: Euclidean Clustering for 3D Point Clouds
        Discussion and Perspectives
      The Segment Anything Model
        The Mission
        3D Project Setup
        Segment Anything Model Core Concepts
        3D Point Cloud to Image Projections
        Unsupervised Segmentation with SAM
        Summary
    14. Supervised 3D Machine Learning Fundamentals
      From Unsupervised to Supervised Learning
      Supervised Learning Concepts
      Supervised Learning Classification
      3D Semantic Segmentation Example
      3D Point Cloud Semantic Segmentation
        3D Python and Data Setup
        Feature Selection and Preparation
        Metrics and Models

        Inference and Generalization
        Specializing 3D Machine Learning with 3D Deep Learning
        Summary
    15. 3D Deep Learning with PyTorch
      3D Deep Learning Backbone
        Network Architecture
        Data Preparation
        AI Model Training
        Serving a Trained Model
        Implementation with PyTorch
          Installing PyTorch (with CUDA)
          Tensors: The Building Blocks
          Neural Network Modules
          Defining a 3D Neural Network
          Hyperparameter Definition
          Optimizer and Loss Functions
          PyTorch DataLoader
          PyTorch Training Loop
          PyTorch Inference
      3D Deep Learning: The Architectures
        3D Convolutional Neural Networks: Voxels
        3D Graph Neural Networks
        Point-based Architectures: PointNet and Point Clouds
        Multiview CNNs
      3D Machine Learning Versus 3D Deep Learning
      Fine-Tuning, Transfer Learning, and 3D Data Augmentation
        Transfer Learning
        Fine-Tuning
        3D Data Augmentation: Expanding the Dataset
        Summary
    16. PointNet for 3D Object Classification
      PointNet: A Point-based 3D Deep Learning Architecture
      3D Object Classification
        3D Object Classification Fundamentals
        Environment Setup
        Dataset Curation
        PointNet: Dataset Preparation
        PointNet Architecture Definition
        PointNet Loss Definition
        PointNet Training
        PointNet Metrics and Evaluation
        PointNet Real-World Inference
        Large-Scale Semantic Segmentation Considerations
        Summary
    17. The 3D Data Science Workflow
      3D Data Acquisition
      3D Data Preparation and Engineering
        Noise Removal
        Subsampling
        Feature Extraction

      3D Data Modeling
        3D Mesh Reconstruction
        Voxelization of 3D Digital Environments
        k-d Trees
        Octrees
      Semantic Extraction
        Clustering and Unsupervised Segmentation
        Semantic Segmentation
      3D Object Classification
      3D Data Visualization and Analysis
        3D Shape Recognition
        3D Data Analytical Tools
        3D Multimodal Python Viewer
        Summary
    18. From 3D Generative AI to Spatial AI
      Advanced 3D Projects
        Generative AI for 3D Reconstruction
        3D Deep Point Cloud Registration
        3D Semantic Modeling
        3D Semantic Extraction with Transformers
        3D Gaussian Splatting for 3D Visualization
      Spatial AI: The Future of 3D Experiences
        3D Scene Understanding with Open Vocabularies
        3D Spatial AI Reasoning
        Conclusion
    Index