欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 旋转设备小样本跨工况故障诊断
      • 作者:胡俊伟//李维刚//张永|责编:程青
      • 出版社:华中科技大学
      • ISBN:9787577220727
      • 出版日期:2025/08/01
      • 页数:189
    • 售价:27.92
  • 内容大纲

        本书介绍了旋转设备小样本跨工况故障诊断的基础理论和工程应用,阐述了小样本机械故障数据驱动诊断技术和工程背景。全书分为11章,内容包括:绪论,旋转机械故障和小样本智能诊断技术基础理论,基于数据增强、优化元学习、度量元学习和半监督学习等的小样本智能诊断技术和实例应用,以及智能诊断的未来挑战。本书涵盖了作者团队近年来在小样本数据驱动故障诊断方面所取得的最新研究成果,内容新颖,结构清晰,实用性强,可为旋转设备小样本跨工况故障诊断提供理论支持和方法指导。
        本书主要适合机械设备故障诊断、状态监测和可靠性维护等领域的技术人员使用和参考,也可作为机械工程、自动化、智能制造和人工智能等相关学科专业的在校师生的教材以及研究人员的参考书。
  • 作者介绍

  • 目录

    第1章  绪论
      1.1  研究背景及意义
      1.2  国内外研究现状
        1.2.1  传统非数据驱动的诊断方法研究现状
        1.2.2  基于数据驱动的智能诊断方法研究现状
    本章参考文献
    第2章  旋转机械故障和小样本智能诊断技术基础理论
      2.1  机械故障介绍
        2.1.1  轴承结构及常见故障
        2.1.2  齿轮结构及常见故障
      2.2  小样本智能诊断技术基础知识
        2.2.1  基于数据增强的小样本故障诊断方法
        2.2.2  基于模型的小样本故障诊断方法
        2.2.3  基于半监督学习的小样本故障诊断方法
      2.3  本章小节
    本章参考文献
    第3章  基于数据增强的单工况齿轮箱小样本故障诊断
      3.1  引言
      3.2  EEMD-ICA降噪
        3.2.1  经验模态分解介绍
        3.2.2  独立成分分析介绍
        3.2.3  EEMD-ICA降噪模型构建
      3.3  CVAE数据增强
        3.3.1  CVAE网络介绍
        3.3.2  CVAE网络设计
      3.4  实验结果和分析
        3.4.1  齿轮箱数据集介绍
        3.4.2  实验验证
      3.5  本章小节
    本章参考文献
    第4章  基于优化元学习变工况齿轮箱小样本故障诊断
      4.1  引言
      4.2  MAML算法介绍
      4.3  时间卷积网络介绍
        4.3.1  因果卷积
        4.3.2  膨胀卷积
        4.3.3  残差连接
        4.3.4  基于时间卷积网络与优化元学习的算法构架
      4.4  实验结果和分析
      4.5  本章小节
    本章参考文献
    第5章  先验知识残差收缩原型网络小样本故障诊断
      5.1  引言
      5.2  基础知识及问题描述
        5.2.1  元学习
        5.2.2  问题描述
      5.3  先验知识残差收缩原型网络小样本故障诊断算法
        5.3.1  算法的诊断过程
        5.3.2  残差收缩网络
        5.3.3  原型网络

      5.4  实例验证
        5.4.1  实验设置
        5.4.2  案例1:齿轮箱数据故障诊断
        5.4.3  案例2:轴承数据故障诊断
        5.4.4  鲁棒性分析
        5.4.5  可视化分析
      5.5  本章小节
    本章参考文献
    第6章  联合迁移细粒粒度度量小样本跨域故障诊断
      6.1  引言
      6.2  联合迁移细粒粒度度量小样本跨域故障诊断算法
        6.2.1  特征提取模块
        6.2.2  细粒度度量模块
        6.2.3  域迁移模块
      6.3  实例验证
        6.3.1  案例1:不同工况下轴承的小样本跨域诊断
        6.3.2  案例2:不同工况下轴承(CWRU)的小样本跨域诊断
        6.3.3  案例3:不同工况下齿轮箱的小样本跨域诊断
      6.4  本章小节
    本章参考文献
    第7章  基于元学习域对抗图卷积网络的跨域小样本故障诊断
      7.1  引言
      7.2  基于元学习域对抗图卷积网络的跨域小样本故障诊断算法
        7.2.1  基于图的特征生成
        7.2.2  域自适应对抗性训练
        7.2.3  可伸缩度量元学习
      7.3  实例验证
        7.3.1  数据集和跨域场景设置
        7.3.2  对比方法与消融验证
        7.3.3  实验结果分析
        7.3.4  解释性分析
      7.4  本章小节
    本章参考文献
    第8章  自适应半监督元学习噪声小样本故障诊断
      8.1  引言
      8.2  基础知识
      8.3  自适应半监督元学习噪声小样本故障诊断算法
        8.3.1  算法的诊断过程
        8.3.2  样本级注意力
        8.3.3  自适应度量
      8.4  实验验证
        8.4.1  实验设置
        8.4.2  案例1:齿轮箱数据故障诊断
        8.4.3  案例2:传动系统动态模拟器故障诊断
        8.4.4  消融实验
        8.4.5  使用不同卷积层的诊断准确率及物理意义分析
      8.5  本章小节
    本章参考文献
    第9章  基于半监督原型优化的小样本故障诊断
      9.1  引言

      9.2  基础知识
        9.2.1  监督对比学习
        9.2.2  原型网络
      9.3  基于半监督原型优化的小样本故障诊断算法
        9.3.1  数据集构造
        9.3.2  基于对比学习的预训练
        9.3.3  基于半监督的原型计算和优化
      9.4  实例验证
        9.4.1  数据集介绍
        9.4.2  对比实验
        9.4.3  消融实验
        9.4.4  异常样本干扰实验
      9.5  本章小节
    本章参考文献
    第10章  半监督对比学习的多工况小样本故障诊断
      10.1  引言
      10.2  时序数据增强方法
      10.3  无监督对比网络
      10.4  诊断模型介绍
        10.4.1  对比学习网络结构
        10.4.2  半监督学习损失构建
        10.4.3  算法流程
      10.5  实例验证
        10.5.1  单工况下模型对比实验
        10.5.2  跨工况下模型对比实验
        10.5.3  样本标签率对比实验
        10.5.4  噪声干扰实验
        10.5.5  模型微调前后对比实验
      10.6  本章小节
    本章参考文献
    第11章  智能诊断技术的挑战
      11.1  引言
      11.2  智能诊断技术的未来工作
        11.2.1  元学习在故障诊断中的未来工作
        11.2.2  智能故障诊断中的未来工作
      11.3  本章小节
    本章参考文献

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>