-
内容大纲
本书始于表面吸附结构信息的概述,并讨论了一些重要的化学吸附系统的结构,详细描述了观察到的表面结构中原子或分子与金属表面之间的化学键,详细描述了表面上键形成和键断裂动力学的实验信息。然后基于d波段模型对多相催化的各个方面进行了深入分析,涵盖了非常重要的硅和锗半导体表面的吸附和化学,着眼于固体-气体界面,并探索了固体-液体界面过程,概述了发生在与水和电解质接触的矿物和氧化物表面上的重要的环境化学过程。 -
作者介绍
-
目录
Preface
Anders Nilsson, Lars G. M. Pettersson and Jens K. N?rskov
1 Surface Structure.
1 Why surface structure?
2 Methods of surface adsorbate structure determination
2.1 General comments
2.2 Electron scattering
2.3 X-ray scattering..
2.4 Ion scattering
2.5 Spectroscopic methods and scanning probe microscopy
3 Adsorbate-induced surface reconstruction
4 Molecular adsorbates - local sites, orientations and intramolecular bondlengths
4.1 General issues and the case of CO on metals
4.2 Simple hydrocarbons on metals
4.3 Carboxylates on metals
4.4 Other substrates: molecules on Si
5 Chemisorption bondlengths
5.1 Metal surfaces
5.2 Oxide surfaces
6 Conclusions
2 Adsorbate Electronic Structure and Bonding on Metal Surfaces
1 Introduction
2 Probing the electronic structure
3 Adsorbate electronic structure and chemical bonding
4 Adsorbate systems
5 Radical atomic adsorption
5.1 The electronic structure of N on Cu(100)
5.2 Chemical bonding of atomic adsorbates
6 Diatomic molecules
6.1 N2 adsorbed on Ni(100)
6.2 CO adsorbed on Ni(100)
6.3 CO adsorbed on Cu(100) and other metals
6.4 CO adsorbed in different sites
6.5 Coadsorption of CO and K on Ni(100)
7 Unsaturated hydrocarbons
7.1 Ethylene (C2H4) adsorbed on Ni(110) and Cu(110)
7.2 Benzene on Ni and Cu surfaces
7.3 Bond energetics and rehybridization from spin-uncoupling
8 Saturated hydrocarbons
8.1 n-Octane adsorbed on Cu(110)
8.2 Difference between octane on Ni and Cu surfaces
9 Lone pair interactions
9.1 Water adsorption on Pt and Cu surfaces
9.2 Adsorption of ammonia and the amino group in glycineon Cu(110)
10 Summary
3 The Dynamics of Making and Breaking Bonds at Surfaces
1 Introduction
2 Theoretical background
2.1 Adiabatic dynamics (Born-Oppenheimer approximation)
2.2 Generic PES topologies
2.3 Dynamics vs. kinetics
2.3.1 Direct dissociation
2.3.2 Precursor-mediated dissociation
2.4 Detailed balance
2.5 Lattice coupling
2.5.1 Energy transfer in adsorption/scattering
2.5.2 Lattice coupling in direct molecular dissociation
2.6 Non-adiabatic dynamics
2.6.1 Hot electrons from chemistry
2.6.2 Chemistry from hot electrons
3 Experimental background
3.1 Experimental techniques
3.2 Typical measurements
3.2.1 Rate measurements
3.2.2 Adsorption-trapping and sticking
3.2.3 Desorption
3.2.4 Scattering
3.2.5 Initial state preparation
3.2.6 Photochemistry/femtochemistry
3.2.7 Single molecule chemistry (STM)
4 Processes
4.1 Atomic adsorption/desorption/scattering
4.1.1 Ar/Pt(111)
4.1.2 H/Cu(111)
4.2 Molecular adsorption/desorption/scattering
4.2.1 NO/Ag(111)
4.2.2 NO/Pt(111)
4.3 Direct dissociation/associative desorption
4.3.1 Activated dissociation
4.3.2 Weakly activated dissociation
4.3.3 Non-activated dissociation
4.4 Precursor-mediated dissociation/associative desorption
4.4.1 O2/Pt(111)
4.5 Direct and precursor-mediated dissociation
4.5.1 N2/W(100)
4.5.2 NH3/Ru(0001)
4.6 Langmuir-Hinschelwood chemistry
4.6.1 (O+CO)/Pt(111)
4.7 Eley-Rideal/Hot atom chemistry
4.7.1 H+H/Cu(111)
4.8 Hot electron chemistry
4.8.1 Photochemistry/femtochemistry
4.8.2 Single molecule chemistry
5 Summary and outlook
4 Heterogeneous Catalysis
1 Introduction
2 Factors determining the reactivity of a transition metal surface
3 Trends in adsorption energies on transition metal surfaces
4 The d-band model.
4.1 One-electron energies and bond energy trends
4.2 The Newns-Anderson model
5 Trends in chemisorption energies
5.1 Variations in adsorption energies from one metal to the next
5.2 Ligand effects in adsorption - changing the d band center
5.2.1 Variations due to changes in surface structure
5.2.2 Variations due to alloying
5.3 Ensemble effects in adsorption - the interpolation principle
6 Trends in activation energies for surface reactions
6.1 Electronic effects in surface reactivity
6.2 Geometrical effects in surface reactivity
7 Br?nsted-Evans-Polanyi relationships in heterogeneousl catalysis
7.1 Correlations from DFT calculations
7.2 Universal relationships
8 Activation barriers and rates
8.1 Transition state theory
8.2 Variational transition state theory and recrossings
8.3 Harmonic transition state theory (HTST)
9 Variations in catalytic rates - volcano relations
9.1 Dissociation rate-determined model
9.2 A Le Chatelier-like principle for heterogeneous catalysis
9.3 Including molecular precursor adsorption
9.4 Sabatier analysis
9.5 A realistic desorption model
9.6 Database of chemisorption energies
10 The optimization and design of catalyst through modeling
10.1 The low-temperature water gas shift (WGS) reaction
10.2 Methanation
11 Conclusions and outlook
5 Semiconductor Surface Chemistry
1 Inroduction
2 Structure of semiconductor surfaces
2.1 Silicon surface structure
2.2 Germanium surface structure
3 Surface oxidation
3.1 Silicon
3.2 Germanium
4 Passivation of semiconductor surfaces
4.1 Silicon passivation
4.1.1 Hydride termination of silicon
4.2 Germanium passivation
4.2.1 Sulfide passivation of germanium
4.2.2 Chloride passivation of germanium
4.2.3 Hydride termination of germanium
5 Reactions at passivated semiconductor surfaces
5.1 Organic functionalization of semiconductor surface
5.2 Reaction with passivated silicon (Si-H and Si-CI)
5.2.1 Hydrosilylation
5.2.2 Grignard reactions on silicon
5.3 Reaction with passivated germanium (Ge-H and Ge-Cl)
5.3.1 Grignard reactions on germanium
5.3.2 Hydrogermylation
5.3.3 Alkanethiol reactions on germanium
5.4 Reaction with compound semiconductors
6 Adsorption of organic molecules under vacuum conditions
6.1 Silicon surface chemistry
6.1.1 Cycloaddition reaction on Si(100)-2x1
6.1.2 Heterocycloadditions
6.1.3 Nueleophilic/electrophilic reactions
6.2 Germanium surface chemistry
6.2.1 Cycloaddition reactions on Ge(100)-2x1
6.2.2 Heterocycloadditions
6.2.3 Nucleophilic/electrophilic reactions
6.2.4 Multiple-layer reactions
6.3 Summary of concepts in organic functionalization
6 Surface Electrochemistry
1 Introduction
2 Special features of electrochemical reactions
2.1 Electrochemical current and potential
2.2 Electrochemical interfaces
2.3 Models of electrochemical electron transfer kinetics
3 Electrochemistry at the molecular scale
3.1 Surface structure
3.2 Bonding of ions
3.3 Bonding of water
3.4 Experimental aspects of current/voltage properties
4 Electrocatalytic reaction processes
4.1 The electrocatalytic reduction of oxygen
4.1.1 Background
4.1.2 Mechanistic pathways
4.1.3 Electroreduction of oxygen on Pt and Pt alloys
4.1.4 Recent quantum chemical studies of the ORR mechanism
4.1.5 State-of-the-art ORR electrocatalyst concepts
4.2 The electrochemical oxidation of small organic molecules
4.2.1 The electrooxidation of carbon monoxide
4.2.2 The electrooxidation of formic acid and methanol
5 Summary and outlook
7 Geochemistry of Mineral Surfaces and Factors Affecting Their ChemicalReactivity
1 Introduction
2 Environmental interfaces
2.1 Common minerals in Earth's crust, soils, and atmosphere, weathering mechanisms and products, and less common minerals that contain oradsorb environmental contaminants
2.2 Solubilities of Al- and Fe(III)-oxides and Al and Fe(III)-(oxy)hydroxides
2.3 Dissolution mechanisms at feldspar-water interfaces
2.4 The nature of metal oxide-aqueous solution interfaces -Ssome basics
3 Factors affecting the chemical reactivity of mineral surfaces
3.1 The reaction of water vapor with metal oxide surfaces - surface science and theoretical studies of simplified model systems S.S illustrating effects of defect density and adsorbate cooperative effects
3.2 Grazing incidence EXAFS spectroscopic studies of Pb(II)aq adsorption on metal oxide surfaces - effect of differences in mue surface functional groups on reactivity
3.3 The structure of hydrated metal oxide surfaces from X-ray uoela cosh diffraction studies
3.4 X-ray standing wave studies of the electrical double layer at solid-aqueous solution interfaces and in situ measurements of surface reactivity
3.5 Effect of organic coatings and microbial biofilms on met
Index
同类热销排行榜
- 故宫日历(公历2017年)(精)26.4
- 时间简史(插图版)18
- 工程数学线性代数(第6版十二五普通高等教育本科国家级规划教材)7.76
- 昆虫记(精)/经典译林8.72
- 数控铣床综合实训教程19.2
- 昆虫记(插图典藏本)(精)11.2
- 化工制图习题集(普通高等教育规划教材)7.2
- 化工制图(普通高等教育规划教材)15.8
- 生命急救技能14
- 时间简史(普及版)(精)15.2
推荐书目
-

孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...
-

时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...
-

本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...
[
