婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾剧粯绻涢幋鐑嗙劯婵炴垶鐟﹂崕鐔兼煏婵炲灝鍔氶柣搴弮濮婃椽宕楅懖鈹垮仦闂佸搫鎳忕划宀勬偩閻戣棄钃熼柕澶涚畱閳ь剛鏁婚弻銊モ攽閸℃侗鈧鏌$€n偆銆掔紒杈ㄥ浮閸┾偓妞ゆ帒瀚壕鍏兼叏濡灝浜归柛鐐垫暬閺岋綁鎮╅悜妯糕偓鍐偣閳ь剟鏁冮埀顒€宓勯梺鍛婄☉鏋ù婊勭矒閺屻劑寮村Δ鈧禍楣冩倵濞堝灝鏋涘褍閰i獮鎴﹀閻橆偅鏂€闁诲函缍嗘禍璺横缚婵犲洦鈷戠紓浣光棨椤忓嫷鍤曢悹铏规磪閹烘绠涢柣妤€鐗冮幏娲⒒閸屾氨澧涚紒瀣浮楠炴牠骞囬鐘殿啎閻庣懓澹婇崰鏍嵁閺嶎厽鐓熼柨婵嗘噹濡茬粯銇勯锝囩畼闁圭懓瀚伴幖褰掓偡閺夎法顔囬梻鍌氬€风欢姘跺焵椤掑倸浠滈柤娲诲灡閺呰埖瀵肩€涙ḿ鍘炬俊銈忕畳濞夋洜鑺遍崸妤佺厪闁搞儯鍔屾慨宥嗩殽閻愭潙娴鐐差儔閹粓宕卞鍡橈紙闂傚倸鍊搁崐椋庣矆娓氣偓楠炴牠顢曚綅閸ヮ剦鏁嶉柣鎰綑閳ь剝鍩栫换婵嬫濞戞艾顣哄銈冨劜瀹€鎼佸蓟濞戔懇鈧箓骞嬪┑鍥╀簮婵犵鍓濊ぐ鍐偋閹捐钃熼柨鐔哄Т缁€鍐煃閸濆嫬鈧悂寮冲Δ鍛拺濞村吋鐟х粔顒€霉濠婂骸澧版俊鍙夊姍楠炴帒螖閳ь剚鍎柣鐔哥矊闁帮絽顕i幎钘夌厸闁告劦浜為敍婊堟煛婢跺﹦澧戦柛鏂跨Ч钘熼柛顐犲劜閻撴稑霉閿濆牜娼愮€规洖鐭傞弻鈩冩媴鐟欏嫬纾抽梺杞扮劍閹瑰洭寮幘缁樻櫢闁跨噦鎷� [闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掍礁鍓銈嗗姧缁犳垿鐛姀銈嗙厓閺夌偞澹嗛崝宥嗐亜閺傚灝顏紒杈ㄦ崌瀹曟帒顫濋钘変壕闁告縿鍎抽惌娆撴煕閺囥劌鐏犵紒鐙€鍨堕弻銊╂偆閸屾稑顏� | 闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳氨绱撻崒娆掑厡缂侇噮鍨跺畷婵單旈崘銊ョ亰闂佸搫鍟悧濠囧磹婵犳碍鐓㈡俊顖欒濡叉悂鏌f惔顔煎籍婵﹨娅g划娆撳箰鎼淬垺瀚抽梻浣虹《閺呮盯宕弶鎴殨闁归棿绀侀崘鈧銈嗘尵閸犳捇宕㈤鍛瘈闁汇垽娼ф禒婊堟煟韫囨梻绠炵€规洘绻傞~婵嬫嚋閻㈤潧骞愰梻浣呵归張顒勩€冮崨顔绢洸闁跨噦鎷�]

    • 大偏差技术和应用(第2版)/科学前沿丛书
      • 作者:(美)埃米尔//奥费尔
      • 出版社:世界图书出版公司
      • ISBN:9787506282918
      • 出版日期:2007/10/01
      • 页数:396
    • 售价:19.6
  • 内容大纲

        本书由浅入深,从个例到一般,从有限维到无限维,系统地介绍了大偏差理论的背景,思想和技巧以及大量的应用。书中内容翔实,思想清晰,处理,严谨流畅,相当多的理论或为作者原创,或者作者从原创论文中摘出并加以处理。
        本书是研究生、博士生学习大偏差理论的一本标准教材,也是研究人员的一本标准参考书。
  • 作者介绍

  • 目录

    Preface to the Second Edition
    Preface to the First Edition
    1 Introduction
      1.1  Rare Events and Large Deviations
      1.2  The Large Deviation Principle
      1.3  Historical Notes and References
    2  LDP for Finite Dimensional Spaces
      2.1  Combinatorial Techniques for Finite Alphabets
        2.1.1  The Method of Types and Sanov's Theorem
        2.1.2  Cramer's Theorem for Finite Alphabets in R
        2.1.3  Large Deviations for Sampling Without Replacement
      2.2  Cramer's Theorem
        2.2.1  Cramer's Theorem in R
        2.2.2  Cramer's Theorem in Rd
      2.3  The Gartner-Ellis Theorem
      2.4  Concentration Inequalities
        2.4.1  Inequalities for Bounded Martingale Differences
        2.4.2  Talagrand's Concentration Inequalities
      2.5  Historical Notes and References
    3  Applications--The Finite Dimensional Case
      3.1  Large Deviations for Finite State Markov Chains
        3.1.1  LDP for Additive Functiona of Markov Chains
        3.1.2  Sanov's Theorem for the Empirical Measure of Markov Chains
        3.1.3  Sanov's Theorem for the Pair Empirical Measure of Markov Chains
      3.2  Long Rare Segments in Random Walks
      3.3  The Gibbs Conditioning Principle for Finite Alphabets
      3.4  The Hypothesis Testing Problem
      3.5  Generalized Likelihood Ratio Test for Finite Alphabets
      3.6  Rate Distortion Theory
      3.7  Moderate Deviations and Exact Asymptotics in Rd
      3.8  Historical Notes and References
    4  General Principles
      4.1  Existence of an LDP and Related Properties
        4.1.1  Properties of the LDP
        4.1.2  The Existence of an LDP
      4.2  Transformations of LDPs
        4.2.1  Contraction Principles
        4.2.2  Exponential Approximations
      4.3  Varadhan's Integral Lemma
      4.4  Bryc's Inverse Varadhan Lemma
      4.5  LDP in Topological Vector Spaces
        4.5.1  A General Upper Bound
        4.5.2  Convexity Considerations
        4.5.3  Abstract Gartner-Ellis Theorem
      4.6  Large Deviations for Projective Limits
      4.7  The LDP and Weak Convergence in Metric Spaces
      4.8  Historical Notes and References
    5 Sample Path Large Deviations
      5.1  Sample Path Large Deviations for Random Walks
      5.2  Brownian Motion Sample Path Large Deviations

      5.3  Multivariate Random Walk and Brownian Sheet
      5.4  Performance Analysis of DMPSK Modulation
      5.5  Large Exceedances in Rd
      5.6  The Freidlin-Wentzell Theory
      5.7  The Problem of Diffusion Exit from a Domain
      5.8  The Performance of Tracking Loops
        5.8.1  An Angular Tracking Loop Analysis
        5.8.2  The Analysis of Range Tracking Loops
      5.9  Historical Notes and References
    6  The LDP for Abstract Empirical Measures
      6.1  Cramer's Theorem in Polish Spaces
      6.2  Sanov's Theorem
      6.3  LDP for the Empirical Measure---The Uniform Markov Case
      6.4  Mixing Conditions and LDP
        6.4.1  LDP for the Empirical Mean in Rd
        6.4.2  Empirical Measure LDP for Mixing Processes
      6.5  LDP for Empirical Measures of Markov Chains
        6.5.1  LDP for Occupation Times
        6.5.2  LDP for the k-Empirical Measures
        6.5.3  Process Level LDP for Markov Chains
      6.6  A Weak Convergence Approach to Large Deviations
      6.7  Historical Notes and References
    7  Applications of Empirical Measures LDP
      7.1  Universal Hypothesis Testing
        7.1.1  A General Statement of Test Optimality
        7.1.2  Independent and Identically Distributed Observations
      7.2  Sampling Without Replacement
      7.3  The Gibbs Conditioning Principle
        7.3.1  The Non-Interacting Case
        7.3.2  The Interacting Case
        7.3.3  Refinements of the Gibbs Conditioning Principle
      7.4  Historical Notes and References
    Appendix
      A   Convex Analysis Considerations in Rd
      B   Topological Preliminaries
        B.1   Generalities
        B.2   Topological Vector Spaces and Weak Topologies
        B.3   Banach and Polish Spaces
        B.4   Mazur's Theorem
      C   Integration and Function Spaces
        C.1   Additive Set Functions
        C.2   Integration and Spaces of Functions
      D   Probability Measures on Polish Spaces
        D.1   Generalities
        D.2   Weak Topology
        D.3   Product Space and Relative Entropy Decompositions
      E   Stochastic Analysis
    Bibliography
    General Conventions
    Index of Notation

    Index

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>