婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繘鏌i幋锝嗩棄闁哄绶氶弻鐔兼⒒鐎靛壊妲紒鎯у⒔缁垳鎹㈠☉銏犵闁绘垵妫涢崝顖氣攽閻愭潙鐏﹂柣鐕傜畵瀹曟洟鎮㈤崗鑲╁帾婵犵數鍋涢悘婵嬪礉濮樿埖鐓熼幖鎼枛瀵喗鎱ㄦ繝鍐┿仢鐎规洘顨婇幊鏍煘閸喕娌梻鍌欑閹碱偊骞婅箛鏇炲灊鐎光偓閸曨剙浠奸梺缁樺灱濡嫰鎷戦悢鍏肩厪濠㈣埖绋撻悾閬嶆煃瑜滈崜娑㈠极婵犳艾钃熼柕濞垮劗閺€浠嬫煕閳╁啩绶遍柍褜鍓氶〃濠囧蓟閿涘嫧鍋撻敐搴′簽闁靛棙甯炵槐鎺撴綇閵娿儲璇為梺绯曟杹閸嬫挸顪冮妶鍡楃瑨閻庢凹鍓涙竟鏇㈠礂閸忕厧寮垮┑鈽嗗灠閻忔繃绂嶈ぐ鎺撶厱闁绘劕鐏氶弳顒勬煛瀹€瀣М闁诡喒鏅犻幃婊兾熺化鏇炰壕闁告劦鍠楅崑锝夋煃瑜滈崜鐔煎极閸愵喖鐒垫い鎺嗗亾鐎规挸瀚板娲川婵犲嫧妲堥柡瀣典簻闇夋繝濠傚閻帡鏌$仦璇插鐎殿喗娼欒灃闁逞屽墯缁傚秵銈i崘鈺佲偓鍨箾閸繄浠㈤柡瀣☉椤儻顦查梺甯秮閻涱噣骞嬮敃鈧~鍛存煟濮楀棗浜濋柡鍌楀亾闂備浇顕ч崙鐣岀礊閸℃ḿ顩查悹鐑樏紓姘攽閻樺弶澶勯柍閿嬪灩缁辨挻鎷呴崗澶嬶紙濡炪倕绻愮€氱兘宕甸弴銏″仯闁惧繗顫夌壕顏堟煙閻戞﹩娈旂紒鐘崇洴閺岋絽螖閳ь剟鎮ч崘顔肩婵炲樊浜濋埛鎺楁煕鐏炵偓鐨戝褎绋撶槐鎺斺偓锝庡亜濞搭喗顨ラ悙瀵稿⒌妤犵偛娲、姗€鎮╁▓鍨櫗闂佽娴烽幊鎾寸珶婵犲洤绐楅柡宥庡幘瀹撲線鏌″搴″箺闁绘挾鍠栭弻銊モ攽閸℃ê娅e┑陇灏欑划顖炲Φ閸曨垼鏁冮柨婵嗘川閻eジ姊洪崷顓熷殌閻庢矮鍗抽獮鏍亹閹烘挸浠梺鍝勵槼濞夋洟顢欓崶顒佲拻闁稿本鑹鹃埀顒勵棑濞嗐垹顫濈捄铏瑰姦濡炪倖甯掗崐鍛婄濠婂牊鐓犳繛鑼额嚙閻忥繝鏌¢崨鏉跨厫閻庝絻鍋愰埀顒佺⊕宀e潡宕㈤悙顑跨箚闁靛牆绻掗悾铏箾婢跺绀堥柤娲憾瀹曠ǹ螖娴e搫甯鹃梻浣规偠閸庮垶宕濈仦鐐弿鐎广儱妫▓浠嬫煟閹邦厽缍戞繛鎼枟椤ㄣ儵鎮欏顔煎壎闂佽鍠楃划鎾崇暦閸楃儐娼ㄩ柛鈩冿公缁辨瑩姊婚崒姘偓鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋為悧鐘汇€侀弴姘辩Т闂佹悶鍎洪崜锕傚极瀹ュ鐓熼柟閭﹀幗缂嶆垿鏌嶈閸撴繈宕洪弽顐e床婵犻潧顑嗛ˉ鍫熺箾閹寸偠澹樻い锝呮惈椤啴濡堕崘銊ュ閻庡厜鍋撻柟闂寸閽冪喐绻涢幋鏃€鍣伴柍褜鍓ㄧ粻鎾荤嵁鐎n亖鏀介柛銉㈡櫃缁喖鈹戦悩娈挎毌闁告挻绻嗛妵鎰板礃椤旇棄浜遍梺瑙勫礃椤曆囨嫅閻斿吋鐓ラ柣鏂挎惈瀛濈紓浣插亾闁告劦鍠楅悡鍐煕濠靛棗顏╅柍褜鍓氶幃鍌氼嚕閸愬弬鏃堝川椤旇瀚煎┑鐐存綑閸氬鎮疯缁棃顢楅埀顒勬箒濠电姴锕ゆ鍛婃櫠閻楀牅绻嗛柛娆忣槸婵秵顨ラ悙鏉戠瑨閾绘牠鏌嶈閸撴岸宕曢锔界厽闁绘柨鎽滈惌濠囨⒑鐢喚鍒版い鏇秮楠炲酣鎸婃径灞藉箰闂備礁鎲¢崝锔界閻愮儤鏅繝濠傜墛閻撴稑顭跨捄鐚村姛濠⒀勫灴閺屾盯寮捄銊愌囨寠閻斿吋鐓曟い鎰Т閸旀粓鏌i幘瀵糕槈闂囧鏌ㄥ┑鍡欏⒈婵炲吋鍔楅埀顒冾潐濞叉牠鎯岄崒鐐茶摕闁斥晛鍟刊鎾偡濞嗗繐顏╃痪鐐▕濮婄儤娼幍顔煎闂佸湱鎳撳ú顓烆嚕椤愶箑绠荤紓浣股戝▍銏ゆ⒑鐠恒劌娅愰柟鍑ゆ嫹 [闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧湱鈧懓瀚崳纾嬨亹閹烘垹鍊炲銈嗗笂缁€渚€宕滈鐑嗘富闁靛牆妫楁慨褏绱掗悩鍐茬伌闁绘侗鍣f慨鈧柕鍫濇閸樻捇鏌℃径灞戒沪濠㈢懓妫濆畷婵嗩吋閸℃劒绨婚梺鍝勫€搁悘婵嬵敂椤愩倗纾奸弶鍫涘妽瀹曞瞼鈧娲樼敮鎺楋綖濠靛鏁勯柦妯侯槷婢规洟姊洪崨濠勭細闁稿孩濞婇幆灞解枎閹惧鍘遍梺鍝勬储閸斿矂鎮橀悩鐢电<闁绘瑢鍋撻柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷 | 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮靛銊ф閹捐纾兼繛鍡樺笒閸橈紕绱撴笟鍥ф珮闁搞劏娉涢悾宄扳攽閸狀喗妫冨畷姗€濡搁妷褌鍠婇梻鍌欑閹碱偊宕锔藉亱濠电姴娲ょ壕鐟扳攽閻樺磭顣查柣鎾卞灪娣囧﹪顢涘▎鎺濆妳濠碘€冲级閹倿寮婚敐鍡樺劅妞ゆ梻鍘х猾宥呪攽椤旂》榫氭繛鍜冪悼閸掓帒鈻庨幘宕囶唶闁瑰吋鐣崹铏光偓姘▕濮婄粯鎷呴搹骞库偓濠囨煛閸涱喚娲寸€规洦鍨跺鍫曞箣椤撶偞顓块梻浣哥秺濡法绮堟笟鈧畷姗€鍩€椤掆偓椤啴濡堕崱妯烘殫闂佸摜濮甸幑鍥х暦閵忋値鏁傞柛娑卞灣閻﹀牓姊哄Ч鍥х伈婵炰匠鍕浄婵犲﹤鐗婇悡鐔肩叓閸ャ劍鈷掔紒鐘靛仧閳ь剝顫夊ú妯兼崲閸岀儑缍栨繝闈涱儐閸ゅ鏌i姀銈嗘锭妤犵偞鍔欏缁樻媴閸涢潧缍婂鐢割敆閸曗斁鍋撻崘顔煎窛妞ゆ梻铏庡ú鎼佹⒑鐠恒劌娅愰柟鍑ゆ嫹]

    • 大偏差技术和应用(第2版)/科学前沿丛书
      • 作者:(美)埃米尔//奥费尔
      • 出版社:世界图书出版公司
      • ISBN:9787506282918
      • 出版日期:2007/10/01
      • 页数:396
    • 售价:19.6
  • 内容大纲

        本书由浅入深,从个例到一般,从有限维到无限维,系统地介绍了大偏差理论的背景,思想和技巧以及大量的应用。书中内容翔实,思想清晰,处理,严谨流畅,相当多的理论或为作者原创,或者作者从原创论文中摘出并加以处理。
        本书是研究生、博士生学习大偏差理论的一本标准教材,也是研究人员的一本标准参考书。
  • 作者介绍

  • 目录

    Preface to the Second Edition
    Preface to the First Edition
    1 Introduction
      1.1  Rare Events and Large Deviations
      1.2  The Large Deviation Principle
      1.3  Historical Notes and References
    2  LDP for Finite Dimensional Spaces
      2.1  Combinatorial Techniques for Finite Alphabets
        2.1.1  The Method of Types and Sanov's Theorem
        2.1.2  Cramer's Theorem for Finite Alphabets in R
        2.1.3  Large Deviations for Sampling Without Replacement
      2.2  Cramer's Theorem
        2.2.1  Cramer's Theorem in R
        2.2.2  Cramer's Theorem in Rd
      2.3  The Gartner-Ellis Theorem
      2.4  Concentration Inequalities
        2.4.1  Inequalities for Bounded Martingale Differences
        2.4.2  Talagrand's Concentration Inequalities
      2.5  Historical Notes and References
    3  Applications--The Finite Dimensional Case
      3.1  Large Deviations for Finite State Markov Chains
        3.1.1  LDP for Additive Functiona of Markov Chains
        3.1.2  Sanov's Theorem for the Empirical Measure of Markov Chains
        3.1.3  Sanov's Theorem for the Pair Empirical Measure of Markov Chains
      3.2  Long Rare Segments in Random Walks
      3.3  The Gibbs Conditioning Principle for Finite Alphabets
      3.4  The Hypothesis Testing Problem
      3.5  Generalized Likelihood Ratio Test for Finite Alphabets
      3.6  Rate Distortion Theory
      3.7  Moderate Deviations and Exact Asymptotics in Rd
      3.8  Historical Notes and References
    4  General Principles
      4.1  Existence of an LDP and Related Properties
        4.1.1  Properties of the LDP
        4.1.2  The Existence of an LDP
      4.2  Transformations of LDPs
        4.2.1  Contraction Principles
        4.2.2  Exponential Approximations
      4.3  Varadhan's Integral Lemma
      4.4  Bryc's Inverse Varadhan Lemma
      4.5  LDP in Topological Vector Spaces
        4.5.1  A General Upper Bound
        4.5.2  Convexity Considerations
        4.5.3  Abstract Gartner-Ellis Theorem
      4.6  Large Deviations for Projective Limits
      4.7  The LDP and Weak Convergence in Metric Spaces
      4.8  Historical Notes and References
    5 Sample Path Large Deviations
      5.1  Sample Path Large Deviations for Random Walks
      5.2  Brownian Motion Sample Path Large Deviations

      5.3  Multivariate Random Walk and Brownian Sheet
      5.4  Performance Analysis of DMPSK Modulation
      5.5  Large Exceedances in Rd
      5.6  The Freidlin-Wentzell Theory
      5.7  The Problem of Diffusion Exit from a Domain
      5.8  The Performance of Tracking Loops
        5.8.1  An Angular Tracking Loop Analysis
        5.8.2  The Analysis of Range Tracking Loops
      5.9  Historical Notes and References
    6  The LDP for Abstract Empirical Measures
      6.1  Cramer's Theorem in Polish Spaces
      6.2  Sanov's Theorem
      6.3  LDP for the Empirical Measure---The Uniform Markov Case
      6.4  Mixing Conditions and LDP
        6.4.1  LDP for the Empirical Mean in Rd
        6.4.2  Empirical Measure LDP for Mixing Processes
      6.5  LDP for Empirical Measures of Markov Chains
        6.5.1  LDP for Occupation Times
        6.5.2  LDP for the k-Empirical Measures
        6.5.3  Process Level LDP for Markov Chains
      6.6  A Weak Convergence Approach to Large Deviations
      6.7  Historical Notes and References
    7  Applications of Empirical Measures LDP
      7.1  Universal Hypothesis Testing
        7.1.1  A General Statement of Test Optimality
        7.1.2  Independent and Identically Distributed Observations
      7.2  Sampling Without Replacement
      7.3  The Gibbs Conditioning Principle
        7.3.1  The Non-Interacting Case
        7.3.2  The Interacting Case
        7.3.3  Refinements of the Gibbs Conditioning Principle
      7.4  Historical Notes and References
    Appendix
      A   Convex Analysis Considerations in Rd
      B   Topological Preliminaries
        B.1   Generalities
        B.2   Topological Vector Spaces and Weak Topologies
        B.3   Banach and Polish Spaces
        B.4   Mazur's Theorem
      C   Integration and Function Spaces
        C.1   Additive Set Functions
        C.2   Integration and Spaces of Functions
      D   Probability Measures on Polish Spaces
        D.1   Generalities
        D.2   Weak Topology
        D.3   Product Space and Relative Entropy Decompositions
      E   Stochastic Analysis
    Bibliography
    General Conventions
    Index of Notation

    Index

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>