欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 有限元方法的数学理论(第3版)
      • 作者:(美)布雷
      • 出版社:世界图书出版公司
      • ISBN:9787510027437
      • 出版日期:2010/09/01
      • 页数:397
    • 售价:22
  • 内容大纲

  • 作者介绍

  • 目录

    Series Preface
    Preface to the Third Edition
    Preface to the Second Edition
    Preface to the First Edition
    0 Basic Concepts
      0.1 Weak Formulation of Boundary Value Problems
      0.2 Ritz-Galerkin Approximation
      0.3 Error Estimates
      0.4 Piecewise Polynomial Spaces - The Finite Element Method
      0.5 Relationship to Difference Methods
      0.6 Computer Implementation of Finite Element Methods
      0.7 Local Estimates
      0.8 Adaptive Approximation
      0.9 Weighted Norm Estimates
      0.x Exercises
    1 Sobolev Spaces
      1.1 Review of Lebesgue Integration Theory
      1.2 Generalized (Weak) Derivatives
      1.3 Sobolev Norms and Associated Spaces
      1.4 Inclusion Relations and Sobolev's Inequality
      1.5 Review of Chapter 0
      1.6 Trace Theorems
      1.7 Negative Norms and Duality
      1.x Exercises
    2 Variational Formulation of Elliptic Boundary Value Problems
      2.1 Inner-Product Spaces
      2.2 Hilbert Spaces
      2.3 Projections onto Subspaces
      2.4 Riesz Representation Theorem
      2.5 Formulation of Symmetric Variational Problems
      2.6 Formulation of Nonsymmetric Variational Problems
      2.7 The Lax-Milgram Theorem
      2.8 Estimates for General Finite Element Approximation
      2.9 Higher-dimensional Examples
      2.x Exercises
    3 The Construction of a Finite Element Space
      3.1 The Finite Element
      3.2 Triangular Finite Elements
         The Lagrange Element
         The Hermite Element
         The Argyris Element
      3.3 The Interpolant
      3.4 Equivalence of Elements
      3.5 Rectangular Elements
         Tensor Product Elements
         The Serendipity Element
      3.6 Higher-dimensional Elements
      3.7 Exotic Elements
      3.x Exercises
    4 Polynomial Approximation Theory in Sobolev Spaces

      4.1 Averaged Taylor Polynomials
      4.2 Error Representation
      4.3 Bounds for Riesz Potentials
      4.4 Bounds for the Interpolation Error
      4.5 Inverse Estimates
      4.6 Tensor-product Polynomial Approximation
      4.7 Isoparametric Polynomial Approximation
      4.8 Interpolation of Non-smooth Functions
      4.9 A Discrete Sobolev Inequality
      4.x Exercises
    5 n-Dimensional Variational Problems
      5.1 Variational Formulation of Poisson's Equation
      5.2 Variational Formulation of the Pure Neumann Problem
      5.3 Coercivity of the Variational Problem
      5.4 Variational Approximation of Poisson's Equation
      5.5 Elliptic Regularity Estimates
      5.6 General Second-Order Elliptic Operators
      5.7 Variational Approximation of General Elliptic Problems
      5.8 Negative-Norm Estimates
      5.9 The Plate-Bending Biharmonic Problem
      5.x Exercises
    6 Finite Element Multigrid Methods
      6.1 A Model Problem
      6.2 Mesh-Dependent Norms
      6.3 The Multigrid Algorithm
      6.4 Approximation Property
      6.5 W-cycle Convergence for the kth Level Iteration
      6.6 P-cycle Convergence for the kth Level Iteration
      6.7 Full Multigrid Convergence Analysis and Work Estimates
      6.x Exercises
    7 Additive Schwarz Preconditioners
      7.1 Abstract Additive Schwarz Framework
      7.2 The Hierarchical Basis Preconditioner
      7.3 The BPX Preconditioner
      7.4 The Two-level Additive Schwarz Preconditioner
      7.5 Nonoverlapping Domain Decomposition Methods
      7.6 The BPS Preconditioner
      7.7 The Neumann-Neumann Preconditioner
      7.8 The BDDC Preconditioner
      7.x Exercises
    8 Max-norm Estimates
      8.1 Main Theorem
      8.2 Reduction to Weighted Estimates
      8.3 Proof of Lemma 8.2.6
      8.4 Proofs of Lemmas 8.3.7 and 8.3.11
      8.5 Lp Estimates (Regular Coefficients)
      8.6 Lp Estimates (Irregular Coefficients)
      8.7 A Nonlinear Example
      8.x Exercises
    9 Adaptive Meshes

      9.1 A priori Estimates
      9.2 Error Estimators
      9.3 Local Error Estimates
      9.4 Estimators for Linear Forms and Other Norms
      9.5 A Convergent Adaptive Algorithm
      9.6 Conditioning of Finite Element Equations
      9.7 Bounds on the Condition Number
      9.8 Applications to the Conjugate-Gradient Method
      9.x Exercises
    10 Variational Crimes
      10.1 Departure from the Framework
      10.2 Finite Elements with Interpolated Boundary Conditions
      10.3 Nonconforming Finite Elements
      10.4 Isoparametric Finite Elements
      10.5 Discontinuous Finite Elements
      10.6 Poincare-Friedrichs Inequalitites for Piecewise Wp1 Functions
      10.x Exercises
    11 Applications to Planar Elasticity
      11.1 The Boundary Value Problems
      11.2 Weak Formulation and Korn's Inequality
      11.3 Finite Element Approximation and Locking
      11.4 A Robust Method for the Pure Displacement Problem
      11.x Exercises
    12 Mixed Methods
      12.1 Examples of Mixed Variational Formulations
      12.2 Abstract Mixed Formulation
      12.3 Discrete Mixed Formulation
      12.4 Convergence Results for Velocity Approximation
      12.5 The Discrete Inf-Sup Condition
      12.6 Verification of the Inf-Sup Condition
      12.x Exercises
    13 Iterative Techniques for Mixed Methods
      13.1 Iterated Penalty Method
      13.2 Stopping Criteria
      13.3 Augmented Lagrangian Method
      13.4 Application to the Navier-Stokes Equations
      13.5 Computational Examples
      13.x Exercises
    14 Applications of Operator-Interpolation Theory
      14.1 The Real Method of Interpolation
      14.2 Real Interpolation of Sobolev Spaces
      14.3 Finite Element Convergence Estimates
      14.4 The Simultaneous Approximation Theorem
      14.5 Precise Characterizations of Regularity
      14.x Exercises
    References
    Index

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>