欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 连续介质力学中的数学模型(第2版英文版)
      • 作者:(美)特马姆
      • 出版社:世界图书出版公司
      • ISBN:9787510084454
      • 出版日期:2015/01/01
      • 页数:342
    • 售价:27.2
  • 内容大纲

  • 作者介绍

  • 目录

    Preface
    A few words about notations
    PART I  FUNDAMENTAL CONCEPTS IN CONTINUUM MECHANICS
    1  Describing the motion of a system: geometry and kinematics
         1.1  Deformations
         1.2  Motion and its observation (kinematics)
         1.3  Description of the motion of a system: Eulerian and
              Lagrangian derivatives
         1.4  Velocity field of a rigid body: helicoidal vector fields
         1.5  Differentiation of a volume integral depending on a parameter
    2  The fundamental law of dynamics
        2.1  The concept of mass
        2.2  Forces
        2.3  The fundamental law of dynamics and its first consequences
        2.4  Application to systems of material points and to rigid bodies
        2.5  Galilean frames: the fundamental law of dynamics expressed
            in a non-Galilean frame
    3  The Cauehy stress tensor and the Piola-Kirchhoff
        tensor Applications
         3.1  Hypotheses on the cohesion forces
         3.2  The Cauchy stress tensor
         3.3  General equations of motion
         3.4  Symmetry of the stress tensor
         3.5  The Piola-Kirchhoff tensor
    4  Real and virtual powers
         4.1  Study of a system of material points
         4.2  General material systems: rigidifying velocities
         4.3  Virtual power of the cohesion forces: the general case
         4.4  Real power: the kinetic energy theorem
    5  Deformation tensor, deformation rate tensor, constitutive laws
         5.1  Further properties of deformations
         5.2  The deformation rate tensor
         5.3  Introduction to theology: the constitutive laws
         5.4  Appendix. Change of variable in a surface integral
    6  Energy equations and shock equations
         6.1  Heat and energy
         6.2  Shocks and the Rankine-Hugoniot relations

    PART II PHYSICS OF FLUIDS
    7  General properties of Newtonian fluids
         7.1  General equations of fluid mechanics
         7.2  Statics of fluids
         7.3  Remark on the energy of a fluid
    8  Flows of inviscid fluids
         8.1  General theorems
         8.2  Plane irrotational flows
         8.3  Transsonic flows
         8.4  Linear accoustics
    9  Viscous fluids and thermohydraulics
         9.1  Equations of viscous incompressible fluids

         9.2  Simple flows of viscous incompressible fluids
         9.3  Thermohydraulics
         9.4  Equations in nondimensional form: similarities
         9.5  Notions of stability and turbulence
         9.6  Notion of boundary layer
    10  Magnetohydrodynamics and inertial confinement of plasmas
         10.1  The Maxwell equations and electromagnetism
         10.2  Magnetohydrodynamics
         10.3  The Tokamak machine
    11  Combustion
         11.1  Equations for mixtures of fluids
         11.2  Equations of chemical kinetics
         11.3  The equations of combustion
         11.4  Stefan-Maxwell equations
         11.5  A simplified problem: the two-species model
    12  Equations of the atmosphere and of the ocean
         12.1  Preliminaries
         12.2  Primitive equations of the atmosphere
         12.3  Primitive equations of the ocean
         12.4  Chemistry of the atmosphere and the ocean
            Appendix. The differential operators in spherical coordinates

    PART  III SOLID MECHANICS
    13  The general equations of linear elasticity
         13.1 Back to the stress-strain law of linear elasticity: the
            elasticity coefficients of a material
         13.2  Boundary value problems in linear elasticity: the
            linearization principle
         13.3  Other equations
         13.4  The limit of elasticity criteria
    14  Classical problems of elastostatics
         14.1  Longitudinal traction-compression of a cylindrical bar
         14.2  Uniform compression of an arbitrary body
         14.3  Equilibrium of a spherical container subjected to
            external and internal pressures
         14.4  Deformation of a vertical cylindrical body under the
            action of its weight
        14.5  Simple bending of a cylindrical beam
        14.6  Torsion of cylindrical shafts
        14.7  The Saint-Venant principle
    15  Energy theorems, duality, and variational formulations
         15.1  Elastic energy of a material
         15.2  Duality - generalization
         15.3  The energy theorems
         15.4  Variational formulations
         15.5  Virtual power theorem and variational formulations
    16  Introduction to nonlinear constitutive laws and
            to homogenization
         16.1  Nonlinear constitutive laws (nonlinear elasticity)
         16.2  Nonlinear elasticity with a threshold

            (Henky's elastoplastic model)
         16.3  Nonconvex energy functions
         16.4  Composite materials: the problem of homogenization
    17  Nonlinear elasticity and an application to biomechanies
         17.1  The equations of nonlinear elasticity
         17.2  Boundary conditions - boundary value problems
         17.3  Hyperelastic materials
         17.4  Hvoerelastic materials in biomechanics

    PART IV INTRODUCTION TO WAVE PHENOMENA
    18  Linear wave equations in mechanics
         18.1  Returning to the equations of linear acoustics and
            of linear elasticity
         18.2  Solution of the one-dimensional wave equation
         18.3  Normal modes
         18.4  Solution of the wave equation
         18.5  Superposition of waves, beats, and packets of waves
    19  The soliton equation: the Korteweg--de Vries equation
         19.1  Water-wave equations
         19.2  Simplified form of the water-wave equations
         19.3  The Korteweg-de Vries equation
         19.4  The soliton solutions of the KdV equation
    20  The nonlinear Sehrodinger equation
         20.1  Maxwell equations for polarized media
         20.2  Equations of the electric field: the linear case
         20.3  General case
         20.4  The nonlinear Schrodinger equation
         20.5  Soliton solutions of the NLS equation  
    Appendix  The partial differential equations of mechanics
    Hints for the exercises
    References
    Index

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>