欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 代数曲线拓扑学(英文版)
      • 作者:(土)A.杰格佳廖夫
      • 出版社:世界图书出版公司
      • ISBN:9787519214739
      • 出版日期:2016/07/01
      • 页数:393
    • 售价:39.6
  • 内容大纲

        《代数曲线拓扑学》作者A.杰格佳廖夫,是代数领域的知名学者,该书适用于复杂拓扑理论和代数簇领域的研究生和数学工作者。
  • 作者介绍

  • 目录

    Preface
    Ⅰ  Skeletons and dessins
      1  Graphs
      1.1  Graphs and trees
        1.1.1  Graphs
        1.1.2  Trees
        1.1.3  Dynkin diagrams
      1.2 Skeletons
        1.2.1  Ribbon graphs
        1.2.2  Regions
        1.2.3  The fundamental group
        1.2.4  First applications
      1.3 Pseudo-trees
        1.3.1  Admissible trees
        1.3.2  The counts
        1.3.3  The associated lattice
      2  The groups г and в3
      2.1 The modular group г := PSL(2, Z)
        2.1.1  The presentation of г
        2.1.2  Subgroups
      2.2 The braid group в3
        2.2.1  Artin's braid groups вn
        2.2.2  The Burau representation
        2.2.3  The group в3
      3  Trigonai curves and elliptic surfaces
      3.1 Trigonal curves
        3.1.1  Basic definitions and properties
        3.1.2  Singular fibers
        3.1.3  Special geometric structures
      3.2 Elliptic surfaces
        3.2.1  The local theory
        3.2.2  Compact elliptic surfaces
      3.3  Real structures
        3.3.1  Real varieties
        3.3.2  Real trigonal curves and real elliptic surfaces
        3.3.3  Lefschetz fibrations
      Dessins
      4.1  Dessins
        4.1.1  Trichotomic graphs
        4.1.2  Deformations
      4.2 Trigonal curves via dessins
        4.2.1  The correspondence theorems
        4.2.2  Complex curves
        4.2.3  Generic real curves
      4.3 First applications
        4.3.1  Ribbon curves
        4.3.2  Elliptic Lefschetz fibrations revisited
      5  The braid monodromy
      5.1  The Zariski-van Kampen theorem
        5.1.1  The monodromy of a proper n-gonal curve

        5.1.2  The fundamental groups
        5.1.3  Improper curves: slopes
      5.2 The case of trigonal curves
        5.2.1  Monodromy via skeletons
        5.2.2  Slopes
        5.2.3  The strategy
      5.3 Universal curves
        5.3.1  Universal Curves
        5.3.2  The irreducibility criteria
    Ⅱ  Applications
      6  The metabelian invariants
      6.1 Dihedral quotients
        6.1.1  Uniform dihedral quotients
        6.1.2  Geometric implications
      6.2 The Alexander module
        6.2.1  Statements
        6.2.2  Proof of Theorem 6.16: the case N ≥ 7
        6.2.3  Congruence subgroups (the case N ≤ 5)
        6.2.4  The parabolic case N = 6
      A few simple computations
      7.1 Trigonal curves in ∑2
        7.1.1  Proper curves in ∑2
        7.1.2  Perturbations of simple singularities
      7.2 Sextics with a non-simple triple point
        7.2.1  A gentle introduction to plane sextics
        7.2.2  Classification and fundamental groups
        7.2.3  A summary of further results
      7.3  Plane quintics
      8  Fundamental groups of plane sextics
      8.1  Statements
        8.1.1  Principal results
        8.1.2  Beginning of the proof
      8.2 A distinguished point of type E
        8.2.1  A point of type E8
        8.2.2  A point of type E7
        8.2.3  A point of type E6
      8.3 A distinguished point of type D
        8.3.1  A point of type Dp, p ≥ 6
        8.3.2  A point of type D5
        8.3.3  A point of type D4
      9  The transcendental lattice
      9.1  Extremal elliptic surfaces without exceptional fibers
        9.1.1  The tripod calculus
        9.1.2  Proofs and further observations
      9.2 Generalizations and examples
        9.2.1  A computation via the homological invariant
        9.2.2  An example
      10 Monodromy factorizations
        10.1 Hurwitz equivalence
        10.1.1 Statement of the problem

        10.1.2 En-valued factorizations
        10.1.3 Sn-valued factorizations
        10.2 Factorizations in Г
        10.2.1 Exponential examples
        10.2.2 2-factorizations
        10.2.3 The transcendental lattice
        10.2.4 2-factorizations via matrices
        10.3 Geometric applications
        10.3.1 Extremal elliptic surfaces
        10.3.2 Ribbon curves via skeletons
        10.3.3 Maximal Lefschetz fibrations are algebraic
      Appendices
      A  An algebraic complement
      A.1 Integral lattices
      A.1.1  Nikulin's theory of discriminant forms
      A.I.2 Definite lattices
      A.2 Quotient groups
      A.2.1  Zariski quotients
      A.2.2 Auxiliary lemmas
      A.2.3  Alexander module and dihedral quotients
      B  Bigonal curves in ∑d
      B. 1 Bigonal curves in ∑d
      B.2 Plane quartics, quintics, and sextics
      C  Computer implementations
      C.1 GAP implementations
      C.I.1  Manipulating skeletons in GAP
      C.1.2  Proof of Theorem 6.16
      D  Definitions and notation
      D.1 Common notation
      D.I.1  Groups and group actions
      D.1.2 Topology and homotopy theory
      D.1.3  Algebraic geometry
      D.1.4 Miscellaneous notation
      D.2 Index of notation
    Bibliography
    Index of figures
    Index of tables
    Index

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>