婵犵數濮烽弫鎼佸磻濞戞娑欐償閵娿儱鐎梺鍏肩ゴ閺呮粌鐣烽弻銉﹀€甸柨婵嗛閺嬫稓绱掗埀顒勫磼濮樿偐鍞甸柣鐘烘〃鐠€锕€危閸涘ǹ浜滈柨鏇楀亾鐎殿喖澧庨幑銏犫攽鐎n亶娼婇梺缁樏璺盒掗幇鐗堚拺闂傚牊绋掗幖鎰箾瀹割喖骞栭柣锝呭槻椤繄鎹勯搹鐟板箰闂備線鈧偛鑻晶浼存煠妤﹁法绨块柕鍥ㄥ姍楠炴帡骞嬮悜鍡橆棨闂傚倷绀侀幖顐λ囬鐐村€舵繝闈涚墕椤ユ岸鏌涢…鎴濇灀婵℃彃鐗撻弻锟犲礃閳哄倸鏆楅梺浼欑秬娴滎剛妲愰幒妤€惟鐟滃酣寮抽埡鍐<閺夊牄鍔嶉ˉ鍫ユ煛娴h宕岄柡浣规崌閺佹捇鏁撻敓锟� [闂傚倸鍊峰ù鍥儍椤愶箑骞㈤柍杞扮劍椤斿嫮绱撻崒姘偓鍝ョ矙閸曨垰绠柨鐕傛嫹 | 闂傚倸鍊烽懗鑸电仚缂備胶绮崝妤冨垝閺冨牊鍊婚柦妯侯槸閻庮參姊虹粙鎸庢拱闁糕晛鍟村鎼佸冀椤撶喓鍘繝鐢靛仜閻忔繈宕濆鑸电厸闁稿本顨呮禍锟�]

    • 数域的上同调(第2版)(英文版)
      • 作者:(德)J.诺伊基希//A.施密特//K.温伯格
      • 出版社:世界图书出版公司
      • ISBN:9787519219673
      • 出版日期:2017/01/01
      • 页数:826
    • 售价:46
  • 内容大纲

        J.诺伊基希、A.施密特、K.温伯格著的《数域的上同调(第2版)(英文版)》是一部教科书,适用于数论专业的学生和数学工作者。书中第1部分提供了代数的基础理论,包括射有限群的上同调,对偶群,自由积,以及模的同调理论。第2部分详述了局部域和全局域的伽罗瓦群,包括Tate二重性,局部域绝对伽罗瓦群的结构,限制分歧,Poitou-Tate二重性,Hasse原理,Grunwald-Wang定理,Leopoldt猜想,黎曼存在性定理,等等。本书是2008年版本的修订版。
  • 作者介绍

  • 目录

    Algebraic Theory
    Chapter Ⅰ:Cohomology of Profinite Groups
      1.Profinite Spaces and Profinite Groups
      2.Defirution of the Cohomology Groups
      3.The Exact Cohomology Sequence
      4.The Cup—Product
      5.Change of the Group G
      6.Basic Properties
      7.Cohomology of Cyclic Groups
      8.Cohomological Triviality
      9.Tate Cohomology of Profinite Groups
    Chapter Ⅱ:Some Homological Algebra
      1.Spectral Sequences
      2.Filtered Cochain Complexes
      3.Degeneration of Spectral Sequences
      4.The Hochschild—Serre Spectral Sequence
      5.The Tate Spectral Sequence
      6.Derived Functors
      7.Continuous Cochain Cohomology
    Chapter Ⅲ:Duality Properties of Profinite Groups
      1.Duality for Class Formations
      2.An Alternative Description of the Reciprocity Homomorphism
      3.Cohomological Dimension
      4.Dualizing Modules
      5.Ptojective pro—c—groups
      6.Profinite Groups of scd G=2
      7.Poincare Groups
      8.Filtrations
      9.Generators and Relations
    Chapter Ⅳ:Free Products of Profinite Groups
      1.Free Products
      2.Subgroups of Free Products
      3.Generalized Free Products
    Chapter Ⅴ:Iwasawa Modules
      1.Modules up to Pseudo—Isomorphism
      2.Complete Group Rings
      3.Iwasawa Modules
      4.Homotopy of Modules
      5.Homotopy Invariants of Iwasawa Modules
      6.Differential Modules and Presentations Arithmetic Theory
    Chapter Ⅵ:Galois Cohomology
      1.Cohomology of the Additive Group
      2.Hilbert's Satz 90
      3.The Brauer Group
      4.The Milnor K—Groups
      5.Dimension of Fields
    Chapter Ⅶ:Cohomology of Local Fields
      1.Cohomology of the Multiplicative Group
      2.The Local Duality Theorem
      3.The Local Euler—Poincare Characteristic

      4.Galois Module Structure of the Multiplicative Group
      5.Explicit Determination of Local Galois Groups
    Chapter Ⅷ:Cohomology of Global Fields
      1.Cohomology of the Idele Class Group
      2.The Connected Component of Ck
      3.Restricted Ramification
      4.The Global Duality Theorem
      5.Local Cohomology of Global Galois Modules
      6.Poitou—Tate Duality
      7.The Global Euler—Poincare Characteristic
      8.Duality for Unramified and Tamely Ramified Extensions
    Chapter Ⅸ:The Absolute Galois Group of a Global Field
      1.The Hasse Principle
      2.The Theorem of Grunwald—Wang
      3.Construction of Cohomology Classes
      4.Local Galois Groups in a Global Group
      5.Solvable Groups as Galois Groups
      6.Safarevic's Theorem
    Chapter Ⅹ:Restricted Ranufication
      1.The Function Field Case
      2.First Observations on the Number Field Case
      3.Leopoldt's Conjecture
      4.Cohomology of Large Number Fields
      5.Riemann's Existence Theorem
      6.The Relation between 2 and ∞
      7.Dimension of Hi(GTS,Z/pZ)
      8.The Theorem of Kuz'min
      9.Free Product Decomposition of Gs(P)
      10.Class Field Towers
      11.The Profinite Group Gs
    Chapter Ⅺ:Iwasawa Theory of Number Fields
      1.The Maximal Abelian Unramified p—Extension of k∞
      2.Iwasawa Theory for p—adic Local Fields
      3.The Maximal Abelianp—Extension of k∞ Unramified Outside S
      4.Iwasawa Theory for Totally Real Fields and CM—Fields
      5.Positively Ramified Extensions
      6.The Main Conjecture
    Chapter Ⅻ:Anabelian Geometry
      1.Subgroups of Gk
      2.The Neukirch—Uchida Theorem
      3.Anabelian Conjectures
    Literature
    Index

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>