濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌熼梻瀵割槮缁惧墽绮换娑㈠箣閻戝棛鍔┑鐐村灦閻燂箓宕曢悢鍏肩厪濠电偛鐏濋崝姘舵煟鎼搭喖寮慨濠冩そ瀹曟鎳栭埞鍨沪闂備礁鎼幊蹇曞垝瀹€鍕仼闁绘垼妫勯拑鐔兼煏婢舵稓鐣遍柍褜鍓涢弫濠氬蓟閵娿儮鏀介柛鈩冧緱閳ь剚顨婇弻锛勨偓锝庡亞閵嗘帞绱掓潏銊ユ诞闁糕斁鍋撳銈嗗笒鐎氼剛澹曢崗鍏煎弿婵☆垰鐏濇禍褰掓煕閻愬灚鏆柡宀嬬秮閹晠鎮滃Ο绯曞亾閸愵喗鍋i柍褜鍓熼弫鍐焵椤掆偓瀹撳嫰姊洪崨濠勨槈閺嬵亜霉濠婂嫮鐭掗柡灞诲姂瀵潙螖閳ь剚绂嶆ィ鍐╁€垫繛鍫濈仢閺嬫稑顭胯闁帮綁鐛幋锕€顫呴柣姗嗗亝閺傗偓闂佽鍑界紞鍡樼鐠烘í缂氬┑鐘叉处閳锋垹绱撴担鍏夋(妞ゅ繐瀚烽崵鏇㈡偣閾忚纾柟鐑橆殔缁犳盯鏌eΔ鈧悧鍐箯濞差亝鈷掗柛灞炬皑婢ф稓绱掔€n偄娴鐐寸墵楠炲洭顢橀悩娈垮晭闁诲海鎳撴竟濠囧窗閺嶎厾宓侀柡宥庡幗閻撶喖鏌ㄥ┑鍡樺櫣婵¤尙绮妵鍕敃閿濆洨鐣奸梺鍦嚀鐎氫即骞栬ぐ鎺撳仭闁哄娉曢鍥⒒閸屾艾鈧娆㈠璺虹劦妞ゆ帒鍊告禒婊堟煠濞茶鐏¢柡鍛板煐鐎佃偐鈧稒岣块崢鐐繆閵堝繒鐣虫繛澶嬫礈閼洪亶宕稿Δ浣哄帾闂佹悶鍎崝灞炬叏瀹ュ棭娈介柣鎰綑濞搭喗顨ラ悙宸剶闁诡喗绮撳畷鍗烆潨閸℃﹫绱欓梻鍌氬€搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇氱秴闁搞儺鍓﹂弫宥夋煟閹邦厽缍戦柍褜鍓濋崺鏍崲濠靛顥堟繛鎴炶壘椤e搫顪冮妶鍐ㄥ姕鐎光偓閹间礁钃熸繛鎴旀噰閳ь剨绠撻獮瀣攽閸モ晙绨┑鐘殿暯閸撴繆銇愰崘顔藉亱闁规崘顕ч拑鐔兼煥閻斿搫孝缂佲偓閸愵喗鐓冮柛婵嗗閳ь剚鎮傚鍐参旈崨顔规嫼婵炴潙鍚嬮悷褏绮旈鈧湁婵犲﹤楠告晶鐗堜繆閸欏濮嶆鐐村笒铻栭柍褜鍓氶崕顐︽煟閻斿摜鐭婇梺甯到椤曪綁骞庨挊澶屽幐闂佸憡鍔︽禍鐐烘晬濠婂牊鐓涘璺猴功婢ф垿鏌涢弬璺ㄐч挊鐔兼煕椤愮姴鍔滈柣鎾寸☉闇夐柨婵嗙墱濞兼劗鈧娲栭惌鍌炲蓟閳╁啯濯撮悷娆忓绾炬娊姊烘潪鎵妽闁圭懓娲顐﹀箻缂佹ɑ娅㈤梺璺ㄥ櫐閹凤拷 [闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ帊绀侀崜顓烆渻閵堝棗濮х紒鐘冲灴閻涱噣濮€閵堝棛鍘撻柡澶屽仦婢瑰棝宕濆鍡愪簻闁哄倸鐏濋顐ょ磼鏉堛劍宕岀€规洘甯掗~婵嬵敄閽樺澹曢梺鍛婄缚閸庢娊鎯屽▎鎾寸厱闁哄洢鍔岄悘鐘电磼閻欌偓閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟� | 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵姘ㄧ槐鎾诲磼濞嗘帒鍘$紓渚囧櫘閸ㄨ泛鐣峰┑鍠棃宕橀妸銉т喊闂備礁鎼崯顐︽偋婵犲洤纾瑰┑鐘崇閻撱垺淇婇娆掝劅婵″弶鎮傞弻锝嗘償椤旂厧绫嶅┑顔硷龚濞咃絿鍒掑▎鎾崇閹兼番鍨虹€氭娊姊绘担铏广€婇柡鍛洴瀹曨垶寮堕幋顓炴闂佸綊妫跨粈渚€宕橀埀顒€顪冮妶鍡樺暗闁哥姵鎹囧畷銏ゎ敂閸涱垳鐦堥梺姹囧灲濞佳勭濠婂牊鐓熼煫鍥ㄦ⒒缁犵偟鈧娲樼换鍌烇綖濠靛鍤嬮柣銏ゆ涧楠炴劙姊绘担鍛靛綊寮甸鍕┾偓鍐川椤旂虎娲搁梺璺ㄥ櫐閹凤拷]

    • 三维流形拓扑学讲义(第2版)(英文版)
      • 作者:(美)萨韦列夫
      • 出版社:世界图书出版公司
      • ISBN:9787519219208
      • 出版日期:2017/01/01
      • 页数:224
    • 售价:19.6
  • 内容大纲

        萨韦列夫著的《三维流形拓扑学讲义(第2版)(英文版)》主要介绍低维拓扑和Casson理论,当然也不失适时地引入最近研究进展和课题。包括许多经典材料,如Heegaard分裂、Dehn手术、扭结和连接不变量。从Kirby微积分开始,进一步讲述Rohlin定理,直到Casson不变量及其应用,并以简短介绍最新进展作为结束。熟悉基础代数和微分拓扑,包括基础群、基本同调理论、横截性和流形上的庞加莱对偶性的数学和理论物理专业的读者均可阅读。
  • 作者介绍

  • 目录

    Preface
    Introduction
    Glossary
    1  Heegaard splittings
      1.1  Introduction
      1.2  Existence of Heegaard splittings
      1.3  Stable equivalence of Heegaard splittings
      1.4  The mapping class group
      1.5  Manifolds of Heegaard genus _< I
      1.6  Seifert manifolds
      1.7  Heegaard diagrams
      1.8  Exercises
    2  Dehn surgery
      2.1  Knots and links in 3-manifolds
      2.2  Surgery on links in S3
      2.3  Surgery description of lens spaces and Seifert manifolds
      2.4  Surgery and 4-manifolds
      2.5  Exercises
    3  Kirby calculus
      3.1  The linking number
      3.2  Kirby moves
      3.3  The linking matrix
      3.4  Reversing orientation
      3.5  Exercises
    4  Even surgeries
      4.1  Exercises
    5  Review of 4-manifolds
      5.1  Definition of the intersection form
      5.2  The unimodular integral forms
      5.3  Four-manifolds and intersection forms
      5.4  Exercises
    6  Four-manifolds with boundary
      6.1  The intersection form
      6.2  Homology spheres via surgery on knots
      6.3  Seifert homology spheres
      6.4  The Rohlin invariant
      6.5  Exercises
    7  Invariants of knots and links
      7.1  Seifert surfaces
      7.2  Seifert matrices
      7.3  The Alexander polynomial
      7.4  Other i nvariants from Seifert surfaces
      7.5  Knots in homology spheres
      7.6  Boundary links and the Alexander polynomial
      7.7  Exercises
    8  Fibered knots
      8.1  The definition of a fibered knot
      8.2  The monodromy
      8.3  More about torus knots
      8.4  Joins

      8.5  The monodromy of torus knots
      8.6  Open book decompositions
      8.7  Exercises
    9  The Arf-invariant
      9.1  The Arf-invariant of a quadratic form
      9.2  The Arf-invariant of a knot
      9.3  Exercises
    10 Rohlin's theorem
      10.1 Characteristic surfaces
      10.2 The definition of q
      10.3 Representing homology classes by surfaces
    11 The Rohlin invariant
      11.1 Definition of the Rohlin invariant
      11.2 The Rohlin invariant of Seifert spheres
      11.3 A surgery formula for the Rohlin invariant
      11.4 The homology cobordism group
      11.5 Exercises
    12 The Casson invariant
      12.1 Exercises
    13 The group SU(2)
      13.1 Exercises
    14 Representation spaces
      14.1 The topology of representation spaces
      14.2 Irreducible representations
      14.3 Representations of free groups
      14.4 Representations of surface groups
      14.5 Representations for Seifert homology spheres
      14.6 Exercises
    15 The local properties of representation spaces
      15.1 Exercises
    16 Casson's invariant for Heegaard splittings
      16.1 The intersection product
      16.2 The orientations
      16.3 Independence of l lcega~lvd splitting
      16.4 Exercises
    17 Casson's invariant for knots
      17.1 Preferred Heegaard splittings
      17.2 The Casson invariant for knots
      17.3 The difference cycle
      17.4 The Casson invariant for boundary links
      17.5 The Casson invariant of a trefoil
    18 An application of the Casson invariant
      18.1 Triangulating 4-manifolds
      18.2 Higher-dimensional manifolds
      18.3 Exercises
    19 The Casson invariant of Seifert manifolds
      19.1 The space R(p,q, r)
      19.2 Calculation of the Casson invariant
      19.3 Exercises
    Conclusion

    Bibliography
    Index

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>