欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 数论(第2卷影印版)(英文版)
      • 作者:(法)H.科恩
      • 出版社:世界图书出版公司
      • ISBN:9787519255282
      • 出版日期:2019/03/01
      • 页数:596
    • 售价:63.6
  • 内容大纲

        《数论》分为2卷,是Springer“数学研究生教材”丛书之239和240卷,是一套面向研究生的数论教程,主旨是全面介绍丢番图方程的解,包括多项式方程、有理数和代数数论等,其中特别强调了算术代数几何的现代理论。全书各章共有530例习题,部分习题有提示。
        本书是其中的第2卷,由H.科恩著。共分2部分8章,内容包括伯努利多项式与伽玛函数、Dirichlet级数和L-函数、p-adicγ和l-函数、线性形式在对数中的应用、高亏格曲线上的有理点等。
  • 作者介绍

  • 目录

    Preface
    Part III. Analytic Tools
      9. Bernoulli Polynomials and the Gamma Function
        9.1  Bernoulli Numbers and Polynomials
          9.1.1  Generating Functions for Bernoulli Polynomials
          9.1.2  Further Recurrences for Bernoulli Polynomials
          9.1.3  Computing a Single Bernoulli Number
          9.1.4  Bernoulli Polynomials and Fourier Series
        9.2  Analytic Applications of Bernoulli Polynomials
          9.2.1  Asymptotic Expansions
          9.2.2  The Euler-MacLaurin Summation Formula
          9.2.3  The Remainder Term and the Constant Term
          9.2.4  Euler-MacLaurin and the Laplace Transform
          9.2.5  Basic Applications of the Euler-MacLaurin Formula
        9.3  Applications to Numerical Integration
          9.3.1  Standard Euler-MacLaurin Numerical Integration
          9.3.2  The Basic Tanh-Sinh Numerical Integration Method
          9.3.3  General Doubly Exponential Numerical Integration
        9.4  x-Bernoulli Numbers, Polynomials, and Functions
          9.4.1  x-Bernoulli Numbers and Polynomials
          9.4.2  x-Bernoulli Functions
          9.4.3  The x-Euler-MacLaurin Summation Formula
        9.5  Arithmetic Properties of Bernoulli Numbers
          9.5.1  x-Power Sums
          9.5.2  The Generalized Clausen-von Staudt Congruence
          9.5.3  The Voronoi Congruence
          9.5.4  The Kummer Congruences
          9.5.5  The Almkvist-Meurman Theorem
        9.6  The Real and Complex Gamma Functions
          9.6.1  The Hurwitz Zeta Function
          9.6.2  Definition of the Gamma Function
          9.6.3  Preliminary Results for the Study of r(s)
          9.6.4  Properties of the Gamma Function
          9.6.5  Specific Properties of the Function w(s)
          9.6.6  Fourier Expansions of S(s,x) and log(F(x))
        9.7  Integral Transforms
          9.7.1  Generalities on Integral Transforms
          9.7.2  The Fourier Transform
          9.7.3  The Mellin Transform
          9.7.4  The Laplace Transform
        9.8  Bessel Functions
          9.8.1  Definitions
          9.8.2  Integral Representations and Applications
        9.9  Exercises for Chapter 9
      10. Dirichlet Series and L-Functions
        10.1  Arithmetic Functions and Dirichlet Series
          10.1.1  Operations on Arithmetic Functions
          10.1.2  Multiplicative Functions
        10.2  The Analytic Theory of L-Series
          10.2.1  Simple Approaches to Analytic Continuation
          10.2.2  The Use of the Hurwitz Zeta Function S(s, x)
          10.2.3  The Functional Equation for the Theta Function
          10.2.4  The Functional Equation for Dirichlet L-Functions
          10.2.5  Generalized Poisson Summation Formulas
          10.2.6  Voronoi's Error Term in the Circle Problem
        10.3  Special Values of Dirichlet L-Functions
          10.3.1  Basic Results on Special Values
          10.3.2  Special Values of L-Functions and Modular Forms
          10.3.3  The P61ya-Vinogradov Inequality
          10.3.4  Bounds and Averages for L(x, 1)
          10.3.5  Expansions of ((s) Around s = k C Z < 1
          10.3.6  Numerical Computation of Euler Products and Sums
        10.4  Epstein Zeta Functions
          10.4.1  The Nonholomorphic Eisenstein Series G(r, s)
          10.4.2  The Kronecker Limit Formula
        10.5  Dirichlet Series Linked to Number Fields
          10.5.1  The Dedekind Zeta Function Sk(s)
          10.5.2  The Dedekind Zeta Function of Quadratic Fields
          10.5.3  Applications of the Kronecker Limit Formula
          10.5.4  The Dedekind Zeta Function of Cyclotomic Fields
          10.5.5  The Nonvanishing of L(x, 1)
          10.5.6  Application to Primes in Arithmetic Progression
          10.5.7  Conjectures on Dirichlet L-Functions
        10.6  Science Fiction on L-Functions
          10.6.1  Local L-Functions
          10.6.2  Global L-Functions
        10.7  The Prime Number Theorem
          10.7.1  Estimates for S(s)
          10.7.2  Newman's Proof
          10.7.3  Iwaniec's Proof
        10.8  Exercises for Chapter 10
      11. p-adic Gamma and L-Functions
        11.1  Generalities on p-adic Functions
          11.1.1  Methods for Constructing p-adic Functions
          11.1.2  A Brief Study of Volkenborn Integrals
        11.2  The p-adic Hurwitz Zeta Functions
          11.2.1  Teichmfiller Extensions and Characters on Zv
          11.2.2  The p-adic Hurwitz Zeta Function for x E CZp
          11.2.3  The Function Sp(s, x) Around s = 1
          11.2.4  The p-adic Hurwitz Zeta Function for x E Zp
        11.3  p-adic L-Functions
          11.3.1  Dirichlet Characters in the p-adic Context
          11.3.2  Definition and Basic Properties of p-adic L-Fun
          11.4.2  Bernoulli Numbers and Regular Primes
          11.4.3  Strengthening of the Almkvist-Meurman Theorem
        11.5  p-adic Log Gamma Functions
          11.5.1  Diamond's p-adic Log Gamma Function
          11.5.2  Morita's p-adic Log Gamma Function
          11.5.3  Computation of some p-adic Logarithms
          11.5.4  Computation of Limits of some Logarithmic Sums
          11.5.5  Explicit Formulas for Cp(r/m) and Cv(x, r/m)
          11.5.6  Application to the Value of Lp(x, 1)
        11.6  Morita's p-adic Gamma Function
          11.6.1  Introduction
          11.6.2  Definitions and Basic Results
          11.6.3  Main Properties of the p-adic Gamma Function
          11.6.4  Mahler-Dwork Expansions Linked to Fp(x)
          11.6.5  Power Series Expansions Linked to Fp(x)
          11.6.6  The Jacobstahl-Kazandzidis Congruence
        11.7  The Gross-Koblitz Formula and Applications
          11.7.1  Statement and Proof of the Gross-Koblitz Formula
          11.7.2  Application to Lp(x,O)
          11.7.3  Application to the Stickelberger Congruence
          11.7.4  Application to the Hasse-Davenport Product Relation
        11.8  Exercises for Chapter 11
    Part IV. Modern Tools
      12. Applications of Linear Forms in Logarithms
        12.1  Introduction
          12.1.1  Lower Bounds
          12.1.2  Applications to Diophantine Equations and Problems
          12.1.3  A List of Applications
        12.2  A Lower Bound for 12m - 3hi
        12.3  Lower Bounds for the Trace of cn
        12.4  Pure Powers in Binary Recurrent Sequences
        12.5  Greatest Prime Factors of Terms of Some Recurrent Se quences
        12.6  Greatest Prime Factors of Values of Integer Polynomials
        12.7  The Diophantine Equation axn - byn = c
        12.8  Simultaneous Pell Equations
          12.8.1  General Strategy
          12.8.2  An Example in Detail
          12.8.3  A General Algorithm
        12.9  Catalan's Equation
        12.10  Thue Equations
          12.10.1  The Main Theorem
          12.10.2  Algorithmic Aspects
        12.11  Other Classical Diophantine Equations
        12.12  A Few Words on the Non-Archimedean Case
      13. Rational Points on Higher-Genus Curves
        13.1  Introduction
        13.2  The Jacobian
          13.2.1  Functions on Curves
          13.2.2  Divisors

          13.2.4  The Group Law: Cantor's Algorithm
          13.2.5  The Group Law: The Geometric Point of View
        13.3  Rational Points on Hyperelliptic Curves
          13.3.1  The Method of Demtyanenko-Manin
          13.3.2  The Method of Chabauty-Coleman
          13.3.3  Explicit Chabauty According to Flynn
          13.3.4  When Chabauty Fails
          13.3.5  Elliptic Curve Chabauty
          13.3.6  A Complete Example
      14. The Super-Fermat Equation
        14.1  Preliminary Reductions
        14.2  The Dihedral Cases (2, 2, r)
          14.2.1  The Equation x2 - y2 = zr
          14.2.2  The Equation x2 + y2 = zr
          14.2.3  The Equations x2 + 3y2 = z3 and X2 + 3y2 = 4Z3
        14.3  The Tetrahedral Case (2, 3, 3)
          14.3.1  The Equation x3 + y3 = z2
          14.3.2  The Equation x3 + y3 = 2z2
          14.3.3  The Equation x3 - 2y3 = z2
        14.4  The Octa.hedral Case (2, 3, 4)
          14.4.1  The Equation x2 - y4 = z3
          14.4.2  The Equation x2 + y4 = z3
        14.5  Invariants, Covariants, and Dessins d'Enfants
          14.5.1  Dessins d'Enfants, Klein Forms, and Covariants
          14.5.2  The Icosahedral Case (2, 3, 5)
        14.6  The Parabolic and Hyperbolic Cases
          14.6.1  The Parabolic Case
          14.6.2  General Results in the Hyperbolic Case
          14.6.3  The Equations x4 + y4 = z3
          14.6.4  The Equation x4 + y4 = z5
          14.6.5  The Equation x6 - y4 = z2
          14.6.6  The Equation x4 - y6 = z2
          14.6.7  The Equation x6 + y4 = z2
          14.6.8  Further Results
        14.7  Applications of Mason's Theorem
          14.7.1  Mason's Theorem
          14.7.2  Applications
        14.8  Exercises for Chapter 14
      15. The Modular Approach to Diophantine Equations
        15.1  Newforms
          15.1.1  Introduction and Necessary Software Tools
          15.1.2  Newforms
          15.1.3  Rational Newforms and Elliptic Curves
        15.2  Ribet's Level-Lowering Theorem
          15.2.1  Definition of "Arises From"
          15.2.2  Ribet's Level-Lowering Theorem
          15.2.3  Absence of Isogenies
          15.2.4  How to use Ribet's Theorem
        15.3  Fermat's Last Theorem and Similar Equations
        
          15.3.2  E Arises from a Curve with Complex Multiplication
       15.3.3 End of the Proof of Theorem 15.3.1
          15.3.4  The Equation x2 = yP + 2rZp for p > 7 and r > 2
          15.3.5  The Equation x2 = yP + zp for p > 7
        15.4  An Occasional Bound for the Exponent
        15.5  An Example of Serre-Mazur-Kraus
        15.6  The Method of Kraus
        15.7  "Predicting Exponents of Constants"
          15.7.1  The Diophantine Equation x2 - 2 = yP
          15.7.2  Application to the SMK Equation
        15.8  Recipes for Some Ternary Diophantine Equations
          15.8.1  Recipes for Signature (p, p, p)
          15.8.2  Recipes for Signature (p, p, 2)
          15.8.3  Recipes for Signature (p, p, 3)
      16. Catalan's Equation
        16.1  Mihailescu's First Two Theorems
          16.1.1  The First Theorem: Double Wieferich Pairs
          16.1.2  The Equation (xp - 1)/(x - 1) = pyq
          16.1.3  Mihailescu's Second Theorem: p | hq and q | hp
        16.2  The + and - Subspaces and the Group S
          16.2.1  The + and - Subspaces
          16.2.2  The Group S
        16.3  Mihailescu's Third Theorem: p < 4q2 and q < 4p2
        16.4  Mihailescu's Fourth Theorem: p = 1 (mod q) or q = 1 (mod p)
          16.4.1  Preliminaries on Commutative Algebra
          16.4.2  Preliminaries on the Plus Part
          16.4.3  Cyclotomic Units and Thaine's Theorem
          16.4.4  Preliminaries on Power Series
          16.4.5  Proof of Mihailescu's Fourth Theorem
          16.4.6  Conclusion: Proof of Catalan's Conjecture
    Bibliography
    Index of Notation
    Index of Names
    General Index

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>