-
内容大纲
《数论》分为2卷,是Springer“数学研究生教材”丛书之239和240卷,是一套面向研究生的数论教程,主旨是全面介绍丢番图方程的解,包括多项式方程、有理数和代数数论等,其中特别强调了算术代数几何的现代理论。全书各章共有530例习题,部分习题有提示。
本书是其中的第1卷,由H.科恩著。共分2部分8章,内容包括工具、丢番图方程。 -
作者介绍
-
目录
Volume I
Preface
1. Introduction to Diophantine Equations
1.1 Introduction
1.1.1 Examples of Diophantine Problems
1.1.2 Local Methods
1.1.3 Dimensions
1.2 Exercises for Chapter 1
Part I. Tools
2. Abelian Groups, Lattices, and Finite Fields
2.1 Finitely Generated Abelian Groups
2.1.1 Basic Results
2.1.2 Description of Subgroups
2.1.3 Characters of Finite Abelian Groups
2.1.4 The Groups (Z/mZ)*
2.1.5 Dirichlet Characters
2.1.6 Gauss Sums
2.2 The Quadratic Reciprocity Law
2.2.1 The Basic Quadratic Reciprocity Law
2.2.2 Consequences of the Basic Quadratic Reciprocity Law
2.2.3 Gauss's Lemma and Quadratic Reciprocity
2.2.4 Real Primitive Characters
2.2.5 The Sign of the Quadratic Gauss Sum
2.3 Lattices and the Geometry of Numbers
2.3.1 Definitions
2.3.2 Hermite's Inequality
2.3.3 LLL-Reduced Bases
2.3.4 The LLL Algorithms
2.3.5 Approximation of Linear Forms
2.3.6 Minkowski's Convex Body Theorem
2.4 Basic Properties of Finite Fields
2.4.1 General Properties of Finite Fields
2.4.2 Galois Theory of Finite Fields
2.4.3 Polynomials over Finite Fields
2.5 Bounds for the Number of Solutions in Finite Fields
2.5.1 The Chevalley-Warning Theorem
2.5.2 Gauss Sums for Finite Fields
2.5.3 Jacobi Sums for Finite Fields
2.5.4 The Jacobi Sums J(x1,x2)
2.5.5 The Number of Solutions of Diagonal Equations
2.5.6 The Well Bounds
2.5.7 The Weil Conjectures (Deligne's Theorem)
2.6 Exercises for Chapter 2
3. Basic Algebraic Number Theory
3.1 Field-Theoretic Algebraic Number Theory
3.1.1 Galois Theory
3.1.2 Number Fields
3.1.3 Examples
3.1.4 Characteristic Polynomial, Norm, Trace
3.1.5 Noether's Lemma
3.1.6 The Basic Theorem of Kummer Theory
3.1.7 Examples of the Use of Kummer Theory
3.1.8 Artin-Schreier Theory
3.2 The Normal Basis Theorem
3.2.1 Linear Independence and Hilbert's Theorem 90
3.2.2 The Normal Basis Theorem in the Cyclic Case
3.2.3 Additive Polynomials
3.2.4 Algebraic Independence of Homomorphisms
3.2.5 The Normal Basis Theorem
3.3 Ring-Theoretic Algebraic Number Theory
3.3.1 Gauss's Lemma on Polynomials
3.3.2 Algebraic Integers
3.3.3 Ring of Integers and Discriminant
3.3.4 Ideals and Units
3.3.5 Decomposition of Primes and Ramification
3.3.6 Galois Properties of Prime Decomposition
3.4 Quadratic Fields
3.4.1 Field-Theoretic and Basic Ring-Theoretic Properties
3.4.2 Results and Conjectures on Class and Unit Groups
3.5 Cyclotomic Fields
3.5.1 Cyclotomic Polynomials
3.5.2 Field-Theoretic Properties of Q(Sn)
3.5.3 Ring-Theoretic Properties
3.5.4 The Totally Real Subfield of Q(Spk )
……
4. p-adic Fields
5. Quadratic Forms and Local-Global Principles
Part II. Diophantine Equations
6. Some Diophantine Equations
7. Elliptic Curves
8. Diophantine Aspects of Elliptic Curves
Bibliography
Index of Notation
Index of Names
General Index
同类热销排行榜
- 目送/人生三书
- 21世纪的《背影》 + 感人至深的“生死笔记”+ 龙应台亲手摄影 + 跨三代共读的人生之书! 华人世界率性犀利的一枝笔,龙应台独家...
- 顾城的诗(金版)(精)/蓝星诗库
- 人类群星闪耀时(插图本)/译林名著精选
- 牛津高阶英汉双解词典(附光盘第8版)(精)
- 文化苦旅(新版)
- 摆渡人
- 解忧杂货店(精)
- 骆驼祥子
- 曾国藩(又笨又慢平天下)
- 查令十字街84号(珍藏版)(精)
推荐书目
-
孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...
-
时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...
-
本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...