欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 李代数和表示论导论(影印版)(英文版)
      • 作者:(美)J.E.汉弗雷斯
      • 出版社:世图出版公司
      • ISBN:9787519255862
      • 出版日期:2019/03/01
      • 页数:171
    • 售价:23.6
  • 内容大纲

        本书是一部优秀的李群及其表示论研究生教材,深受数学专业和物理专业的研究生好评。本书初版于1972年,以后经过多次修订重印,本书是1997年的第7次修订重印版。书中对一些问题的处理很有特色,立足点较高,但叙述十分清晰,如线性变换的Jordan-Chevalley分解、Cartan子代数的共轭定理、同构定理的证明、根系统的公理化处理、Weyl特征子公式、Chevalley群的基本结构等。  
  • 作者介绍

  • 目录

    PREFACE
    Ⅰ.BASIC CONCEPTS
      1.Definitions and first examples
        1.1  The notion of Lie algebra
        1.2  Linear Lie algebras
        1.3  Lie algebras of derivations
        1.4  Abstract Lie algebras
      2.Ideals and homomorphisms
        2.1  Ideals
        2.2  Homomorphisms and representations
        2.3  Automorphisms
      3. Solvable and nilpotent Lie algebras
        3.1  Solvability
        3.2  Nilpotency
        3.3  Proof of Engel's Theorem
    Ⅱ.SEMISIMPLE LIE ALGEBRAS
      4.Theorems of Lie and Cartan
        4.1  Lie's Theorem
        4.2  Jordan-Chevalley decomposition
        4.3  Cartan's Criterion
      5.Killing form
        5.1  Criterion for semisimplicity
        5.2  Simple ideals of L
        5.3  Inner derivations
        5.4  Abstract Jordan decomposition
      6.Complete reducibifity of representations
        6.1  Modules
        6.2  Casimir element of a representation
        6.3  Weyl's Theorem
        6.4  Preservation of Jordan decomposition
      7.Representations of sl (2,F)
        7.1  Weights and maximal vectors
        7.2  Classification of irreducible modules
      8.Root space decomposition
        8.1  Maximal toral subalgebras and roots
        8.2  Centralizer of H
        8.3  Orthogonality properties
        8.4  Integrality properties
        8.5  Rationality properties. Summary
    Ⅲ.ROOT SYSTEMS
      9.Axiomatics
        9.1  Reflections in a euclidean space
        9.2  Root systems
        9.3  Examples
        9.4  Pairs of roots
      10.Simple roots and Weyl group
        10.1  Bases and Weyl chambers
        10.2  Lemmas on simple roots
        10.3  The Weyl group
        10.4  Irreducible root systems

      11.Classification
        11.1  Cartan matrix of
        11.2  Coxeter graphs and Dynkin diagrams
        11.3  Irreducible components
        11.4  Classification theorem
      12.Construction of root systems and automorphisms
        12.1  Construction of types A-G
        12.2  Automorphisms of
      13.Abstract theory of weights
        13.1  Weights
        13.2  Dominant weights
        13.3  The weight δ
        13.4  Saturated sets of weights
    Ⅳ.ISOMORPHISM AND CONJUGACY THEOREMS
      14.Isomorphism theorem
        14.1  Reduction to the simple case
        14.2  Isomorphism theorem
        14.3  Automorphisms
      15.Cartan subalgebras
        15.1  Decomposition of L relative to ad x
        15.2  Engel subalgebras
        15.3  Caftan subalgebras
        15.4  Functorial properties
      16.Conjugacy theorems
        16.1  The group E(L)
        16.2  Conjugacy of CSA's (solvable case)
        16.3  Borel subalgebras
        16.4  Conjugacy of Borel subalgebras
        16.5  Automorphism groups
    Ⅴ.EXISTENCE THEOREM
      17.Universal enveloping algebras
        17.1  Tensor and symmetric algebras
        17.2  Construction of U(L)
        17.3  PBW Theorem and consequences
        17.4  Proof of PBW Theorem
        17.5  Free Lie algebras
      18.Generators and relations
        18.1  Relations satisfied by L
        18.2  Consequences of (S1)-($3)
        18.3  Serre's Theorem
        18.4  Application: Existence and uniqueness theorems
      19.The simple algebras
        19.1  Criterion for semisimplicity
        19.2  The classical algebras
        19.3  The algebra G2
    Ⅵ.REPRESENTATION THEORY
      20.Weights and maximal vectors
        20.1  Weight spaces
        20.2  Standard cyclic modules
        20.3  Existence and uniqueness theorems

      21.Finite dimensional modules
        21.1  Necessary condition for finite dimension
        21.2  Sufficient condition for finite dimension
        21.3  Weight strings and weight diagrams
        21.4  Generators and relations for V(λ)
      22.Multiplicity formula
        22.1  A universal Casimir element
        22.2  Traces on weight spaces
        22.3  Freudenthal's formula
        22.4  Examples
        22.5  Formal characters
      23.Characters
        23.1  Invariant polynomial functions
        23.2  Standard cyclic modules and characters
        23.3  Harish-Chandra's Theorem Appendix
      24.Formulas of Weyl, Kostant, and Steinberg
        24.1  Some functions on H
        24.2  Kostant's multiplicity formula
        24.3  Weyl's formulas
        24.4  Steinberg's formula Appendix
    Ⅶ.CHEVALLEY ALGEBRAS AND GROUPS
      25.Chevalley basis of L
        25.1  Pairs of roots
        25.2  Existence of a Chevalley basis
        25.3  Uniqueness questions
        25.4  Reduction modulo a prime
        25.5  Construction of Chevalley groups (adjoint type)
      26.Kostant's Theorem
        26.1  A combinatorial lemma
        26.2  Special case: sl (2, F)
        26.3  Lemmas on commutation
        26.4  Proof of Kostant's Theorem
      27.Admissible lattices
        27.1  Existence of admissible lattices
        27.2  Stabilizer of an admissible lattice
        27.3  Variation of admissible lattice
        27.4  Passage to an arbitrary field
        27.5  Survey of related results
    References
    Afterword (1994)
    Index of Terminology
    Index of Symbols

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>