欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 分析方法(修订版)(英文版)
      • 作者:(美)R.S.斯特里查兹
      • 出版社:世界图书出版公司
      • ISBN:9787519248659
      • 出版日期:2018/10/01
      • 页数:739
    • 售价:55.6
  • 内容大纲

        数学主要讲述思想方法的学科,深入理解数学比掌握一大堆的定理、定义、问题和技术显得更为重要。本书介绍分析方法,结合详尽、广泛的阐述,便于读者深入理解分析内涵和基本方法。
  • 作者介绍

  • 目录

    Preface
    1  Preliminaries
      1.1  The Logic cf Quantifiers
        1.1.1  Rules of Quantifiers
        1.1.2  Examples
        1.1.3  Exercises
      1.2  Infinite Sets
        1.2.1  Countable Sets
        1.2.2  Uncountable Sets
        1.2.3  Exexcises
      1.3  Proofs
        1.3.1  How to Discover Proofs
        1.3.2  How to Understand Proofs
      1.4  The Rational Number System
      1.5  The Axiom of Choice*
    2  Construction of the Real Number System
      2.1  Cauchy Sequences
        2.1.1  Motivation
        2.1.2  The Definition
        2.1.3  Exercises
      2.2  The Reals as an Ordered Field
        2.2.1  Defining Arithmetic
        2.2.2  The Field Axioms
        2.2.3  Order
        2.2.4  Exercises
      2.3  Limits and Completeness
        2.3.1  Proof of Completeness
        2.3.2  Square Roots
        2.3.3  Exercises
      2.4  Other Versions and Visions
        2.4.1  Infinite Decimal Expansions
        2.4.2  Dedekind Cuts*
        2.4.3  Non-Standard Analysis*
        2.4.4  Constructive Analysis*
        2.4.5  Exercises
      2.5  Summary
    3  Topology of the Real Line
      3.1  The Theory of Limits
        3.1.1  Limits, Sups, and Infs
        3.1.2  Limit Points
        3.1.3  Exercises
      3.2  Open Sets and Closed Sets
        3.2.1  Open Sets
        3.2.2  Closed Sets
        3.2.3  Exercises
      3.3  Compact Sets
        3.3.1  Exercises
      3.4  Summary
    4  Continuous Functions
      4.1  Concepts of Continuity

        4.1.1  Definitions
        4.1.2  Limits of Functions and Limits of Sequences
        4.1.3  Inverse Images of Open Sets
        4.1.4  Related Definitions
        4.1.5  Exercises
      4.2  Properties of Continuous Functions
        4.2.1  Basic Properties
        4.2.2  Continuous Functions on Compact Domains
        4.2.3  Monotone Functions
        4.2.4  Exercises
      4.3  Summary
    5  Differential Calculus
      5.1  Concepts of the Derivative
        5.1.1  Equivalent Definitions
        5.1.2  Continuity and Continuous Differentiability
        5.1.3  Exercises
      5.2  Properties of the Derivative
        5.2.1  Local Properties
      5,2.2  Intermediate Value and Mean Value Theorems
        5.2.3  Global Properties
        5.2.4  Exercises
      5.3  The Calculus of Derivatives
      5.3  ,1  Product and Quotient Rules
        5.3.2  The Chain Rule
        5.3.3  Inverse Function Theorem
        5.3.4  Exercises
      5.4  Higher Derivatives and Taylor's Theorem
        5.4.1  Interpretations of the Second Derivative
        5.4.2  Taylor's Theorem
        5.4.3  L'HSpital's Rule*
        5.4.4  Lagrange Remainder Formula*
        5.4.5  Orders of Zeros*
        5.4.6  Exercises
        5,5  Summary
    6  Integral Calculus
      6.1  Integrals of Continuous Functions
        6.1.1  Existence of the Integral
        6.1.2  Fundamental Theorems of Calculus
        6.1.3  Useful Integration Formulas
        6.1.4  Numerical Integration
        6.1.5  Exercises
      6.2  The Riemann Integral
        6.2.1  Definition of the Integral
        6.2.2  Elementary Properties of the Integral
        6.2.3  Functions with a Countable Number of Discontinuities*
        6.2.4  Exercises
      6.3  Improper Integrals*
        6.3.1  Definitions and Examples
        6.3.2  Exercises
      6.4  Summary

    7 Sequences and Series of Functions
      7.1  Complex Numbers
        7.1.1  Basic Properties of C
        7.1.2  Complex-Valued Functions
        7.1.3  Exercises
      7.2  Numerical Series and Sequences
        7.2.1  Convergence and Absolute Convergence
        7.2.2  Rearrangements
        7.2.3  Summation by Parts*
        7.2.4  Exercises
      7.3  Uniform Convergence
        7.3.1  Uniform Limits and Continuity
        7.3.2  Integration and Differentiation of Limits
        7.3.3  Unrestricted Convergence*
        7.3.4  Exercises
      7.4  Power Series
        7.4.1  The Radius of Convergence
        7.4.2  Analytic Continuation
        7.4.3  Analytic Functions on Complex Domains*
        7.4.4  Closure Properties of Analytic Functions*
        7.4.5  Exercises
      7.5  Approximation by Polynomials
        7.5.1  Lagrange Interpolation
        7.5.2  Convolutions and Approximate Identities
        7.5.3  The Weierstrass Approximation Theorem
        7.5.4  Approximating Derivatives
        7.5.5  Exercises
      7.6  Equicontinuity
        7.6.1  The Definition of Equicontinuity
        7.6.2  The Arzela-Ascoli Theorem
        7.6.3  Exercises
      7.7  Summary
    8  Transcendental Functions
      8.1  The Exponential and Logarithm
        8.1.1  Five Equivalent Definitions
        8.1.2  Exponential Glue and Blip Functions
        8.1.3  Functions with Prescribed Taylor Expansions*
        8.1.4  Exercises
      8.2  Trigonometric Functions
        8.2.1  Definition of Sine and Cosine
        8.2.2  Relationship Between Sines, Cosines, and Com-plex Exponentials
        8.2.3  Exercises
      8.3  Summary
    9  Euclidean Space and Metric Spaces
      9.1  Structures on Euclidean Space
        9.1.1  Vector Space and Metric Space
        9.1.2  Norm and Inner Product
        9.1.3  The Complex Case
        9.1.4  Exercises
      9.2  Topology of Metric Spaces

        9.2.1  Open Sets
        9.2.2  Limits and Closed Sets
        9.2.3  Completeness
        9.2.4  Compactness
        9.2.5  Exercises
      9.3  Continuous Functions on Metric Spaces
        9.3.1  Three Equivalent Definitions
        9.3.2  Continuous Functions on Compact Domains
        9.3.3  Connectedness
        9.3.4  The Contractive Mapping Principle
        9.3.5  The Stone-Weierstrass Theorem*
        9.3.6  Nowhere Differentiable Functions, and Worse*
        9.3.7  Exercises
      9.4  Summary
    10  Differential Calculus in Euclidean Space
      10.1  The Differential
        10.1.1  Definition of Differentiability
        10.1.2  Partial Derivatives
        10.1.3  The Chain Rule
        10.1.4  Differentiation cf Integrals
        10.1.5  Exercises
      10.2  Higher Derivatives
        10.2.1  Equality cf Mixed Partials
        10.2.2  Local Extrema
        10.2.3  Taylor Expansions
        10.2.4  Exercises
      10.3  Summary
    11  Ordinary Differential Equations
      11.1  Existence and Uniqueness
        11.1.1  Motivation
        11.1.2  Picard Iteration
        11.1.3  Linear Equations
        11.1.4  Local Existence and Uniqueness*
      11.1  ,5 Higher Order Equations*
        11.1.6  Exercises
      11.2  Other Methods of Solution*
        11.2.1  Difference Equation Approximation
        11.2.2  Peano Existence Theorem
        11.2.3  Power-Series Solutiovs
      11.2  ,4 Exercises
      11.3  Vector Fields and Flows*
        11.3.1  Integral Curves
        11.3.2  Hamiltonian Mechanics
        11.3.3  First-Order Linear P.D.E.'s
        11.3.4  Exercises
      11.4  Summary
    12  Fourier Series
      12.1  Origins of Fourier Series
        12.1.1  Fourier Series Solutions of P.D.E.'s
        12.1.2  Spectral Theory

        12.1.3  Harmonic Analysis
        12.1.4  ExeIcises
      12.2  Convergence of Fourier Series
        12.2.1  Uniform Convergence for Ci Functions
        12.2.2  Summability of Fourier Series
        12.2.3  Convergence in the Mean
        12.2.4  Divergence and Gibb's Phenomenon*
        12.2.5  Solution of the Heat Equation*
        12.2.6  Exercises
      12.3  Summary
    13  Implicit Functions, Curves, and Surfaces
      13.1  The Implicit Function Theorem
        13.1.1  Statement of the Theorem
        13.1.2  The Proof*
        13.1.3  Exercises
      13.2  Curves and Surfaces
        13.2.1  Motivation and Examples
        13.2.2  Immersions and Embeddings
        13.2.3  Parametric Description of Surfaces
        13.2.4  Implicit Description of Surfaces
        13.2.5  Exercises
      13.3  Maxima and Minima on Surfaces
        13.3.1  Lagrange Multipliers
        13.3.2  A Second Derivative Test*
        13.3.3  Exercises
      13.4  Arc Length
        13.4.1  Rectifiable Curves
        13.4.2  The Integral Formula for Arc Length
        13.4.3  Arc Length Parameterization*
        13.4.4  Exercises
      13.5  Summary
    14  The Lebesgue Integral
      14.1  The Concept of Measure
        14.1.1  Motivation
        14.1.2  Properties of Length
        14.1.3  Measurable Sets
        14.1.4  Basic Properties of Measures
        14.1.5  A Formula for Lebesgue Measure
        14.1.6  Other Examples of Measures
        14.1.7  Exercises
      14.2  Proof of Existence of Measures*
        14.2.1  Outer Measures
        14.2.2  Metric Outer Measure
        14.2.3  Hausdorff Measures*
        14.2.4  Exercises
      14.3  The Integral
        14.3.1  Non-negative Measurable Functions
        14.3.2  The Monotone Convergence Theorem
        14.3.3  Integrable Functions
        14.3.4  Almost Everywhere

        14.3.5  Exercises
      14.4  The Lebesgue Spaces L1 and L2
        14.4.1  L1 as a Banach Space
        14.4.2  L2 as a Hilbert Space
        14.4.3  Fourier Series for L2 Functions
        14.4.4  Exercises
      14.5  Summary
    15  Multiple Integrals
      15.1  Interchange of Integrals
        15.1.1  Integrals of Continuous Functions
        15.1.2  Fubini's Theorem
        15.1.3  The Monotone Class Lemma*
        15.1.4  Exercises
      15.2  Change of Variable in Multiple Integrals
        15.2.1  Determinants and Volume
        15.2.2  The Jacobian Factor*
        15.2.3  Polar Coordinates
        15.2.4  Change of Variable for Lebesgue Integrals*
        15.2.5  Exercises
      15.3  Summary
    Index

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>