欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 二阶抛物微分方程(修订版)(英文版)
      • 作者:(美)G.M.利伯曼
      • 出版社:世界图书出版公司
      • ISBN:9787519264215
      • 出版日期:2019/09/01
      • 页数:447
    • 售价:39.6
  • 内容大纲

        1977年,德国Springer出版了《二阶椭圆偏微分方程》(Elliptic Partial Differential Equations of Second Order, D. Gilbarg, S. Trudinger)。20年之后的1996年,G. M. Lieberman撰写了《二阶抛物微分方程》,成为《二阶椭圆偏微分方程》的姊妹篇。几十年来,这两部书的均成为受读者欢迎的经典教科书。
  • 作者介绍

  • 目录

    PREFACE
    PREFACE TO REVISED EDITION
    Chapter Ⅰ  INTRODUCTION
      1.Outline of this book
      2.Further remarks
      3.Notation
    Chapter Ⅱ  MAXIMUM PRINCIPLES
      Introduction
      I.The weak maximum principle
      2.The strong maximum principle
      3.A priori estimates
      Notes
      Exercises
    Chapter Ⅲ  INTRODUCTION TO THE THEORY OF WEAK SOLUTIONS
      Introduction
      1.The theory of weak derivatives
      2.The method of continuity
      3.Problems in small balls
      4.Global existence and the Perron process
      Notes
      Exercises
    Chapter Ⅳ  HOLDER ESTIMATES
      Introduction
      1.Ho1der continuity
      2.Campanato spaces
      3.Interior estimates
      4.Estimates near a flat boundary
      5.Regularized distance
      6.Intermediate Schauder estimates
      7.Curved boundaries and nonzero boundary data
      8.Two special mixed problems
      Notes
      Exercises
    Chapter Ⅴ  EXISTENCE, UNIQUENESS AND REGULARITY OF SOLUTIONS
      Introduction
      1.Uniqueness of solutions
      2.The Cauchy-Dirichlet problem with bounded coefficients
      3.The Cauchy-Dirichlet problem with unbounded coefficients
      4.The oblique derivative problem
      Notes
      Exercises
    Chapter Ⅵ  FURTHER THEORY OF WEAK SOLUTIONS
      Introduction
      1.Notation and basic results
      2.Differentiability of weak solutions
      3.Sobolev inequalities
      4.Poincarf's inequality
      5.Global boundedness
      6.Local estimates
      7.Consequences of the local estimates

      8.Boundary estimates
      9.More Sobolev-type inequalities
      10.Conormal problems
      11.A special mixed problem
      12.Solvability in H61der spaces
      13.The parabolic DeGiorgi classes
      Notes
      Exercises
    Chapter Ⅶ  STRONG SOLUTIONS
      Introduction
      1.Maximum principles
      2.Basic results from harmonic analysis
      3.Lp estimates for constant coefficient divergence structure equations
      4.Interior Lp estimates for solutions of nondivergence form constant coefficient equations
      5.An interpolation inequality
      6.Interior Lp estimates
      7.Boundary and global estimates
      8.Wp2,1 estimates for the oblique derivative problem
      9.The local maximum principle
      10.The weak Harnack inequality
      11.Boundary estimates
      Notes
      Exercises
    Chapter Ⅷ  FIXED POINT THEOREMS AND THEIR APPLICATIONS
      Introduction
      1.The Schauder fixed point theorem
      2.Applications of the Schauder theorem
      3.A theorem of Caristi and its applications
      Notes
      Exercises
    Chapter Ⅸ  COMPARISON AND MAXIMUM PRINCIPLES
      Introduction
      I.Comparison principles
      2.Maximum estimates
      3.Comparison principles for divergence form operators
      4.The maximum principle for divergence form operators
      Notes
      Exercises
    Chapter Ⅹ  BOUNDARY GRADIENT ESTIMATES
      Introduction
      1.The boundary gradient estimate in general domains
      2.Convex-increasing domains
      3.The spatial distance function
      4.Curvature conditions
      5.Nonexistence results
      6.The case of one space dimension
      7.Continuity estimates
      Notes
      Exercises
    Chapter Ⅺ  GLOBAL AND LOCAL GRADIENT BOUNDS

      Introduction
      1.Global gradient bounds for general equations
      2.Examples
      3.Local gradient bounds
      4.The Sobolev theorem of Michael and Simon
      5.Estimates for equations in divergence form
      6.The case of one space dimension
      7.A gradient bound for an intermediate situation
      Notes
      Exercises
    Chapter Ⅻ  HOLDER GRADIENT ESTIMATES AND EXISTENCE THEOREMS
      Introduction
      1.Interior estimates for equations in divergence form
      2.Equations in one space dimension
      3.Interior estimates for equations in general form
      4.Boundary estimates
      5.Improved results for nondivergence equations
      6.Selected existence results
      Notes
      Exercises
    Chapter ⅩⅢ  THE OBLIQUE DERIVATIVE PROBLEM FOR QUASILINEAR PARABOLIC EQUATIONS
      Introduction
      1.Maximum estimates
      2.Gradient estimates for the conormal problem
      3.Gradient bounds for uniformly parabolic problems in general form
      4.The H61der gradient estimate for the conormal problem
      5.Nonlinear boundary conditions with linear equations
      6.The H61der gradient estimate for quasilinear equations
      7.Existence theorems
      Notes
      Exercises
    Chapter ⅩⅣ  FULLY NONLINEAR EQUATIONS Ⅰ. INTRODUCTION
      Introduction
      1.Comparison and maximum principles
      2.Simple uniformly parabolic equations
      3.Higher regularity of solutions
      4.The Cauchy-Dirichlet problem
      5.Boundary second derivative estimates
      6.The oblique derivative problem
      7.The case of one space dimension
      Notes
      Exercises
    Chapter ⅩⅤ  FULLY NONLINEAR EQUATIONS Ⅱ. HESSIAN EQUATIONS
      Introduction
      1.General results for Hessian equations
      2.Estimates on solutions
      3.Existence of solutions
      4.Properties of symmetric polynomials
      5.The parabolic analog of the Monge-Ampere equation
      Notes

      Exercises
    Bibliography
    Index

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>