濠电姷鏁告慨鐑藉极閹间礁纾绘繛鎴烆焸濞戞瑦鍎熼柕濞垮劚閻庮參姊洪崗鑲┿偞闁哄懏绮岄悾鐑藉蓟閵夛箑鈧敻鏌ㄥ┑鍡涱€楅柡瀣〒缁辨帡鍩€椤掑嫬纾兼慨妯垮亹閸炵敻鏌i悩鐑樸€冮悹鈧敃鈧嵄闁告稑枪娴滄粓鏌ㄩ弴妤€浜鹃悗娈垮枛婢у酣骞戦姀鐘斀閻庯綆浜跺ḿ濠囨⒑缂佹◤顏勵嚕鐠虹洅鎺楀箛閻楀牃鎷洪梻鍌氱墛缁嬫帡骞栭幇顓犵鐎瑰壊鍠栭獮鏍煟閿濆懎妲绘い顐g箘閹瑰嫰鎼归悷鏉跨闂傚倷绶氶埀顒傚仜閼活垱鏅舵导瀛樼厾濡わ箒娉曠花鍧楁煏閸ャ劌濮嶆鐐村浮楠炲鎮滈崱姗嗘(闂傚倸鍊风粈渚€骞栭位鍥敍閻愭潙鈧埖绻濋棃娑氬妞ゃ儲宀搁弻娑⑩€﹂幋婵囩亐濠碘剝褰冮悧鎾诲蓟閿熺姴绀冮柍鍝勫€搁弳妤呮⒑娴兼瑧绉ù婊庡墰濡叉劙骞掑Δ鈧儫閻熸粌閰e鎶藉煛閸愵亞锛滈柡澶婄墑閸斿秹藟閸儲鐓涘ù锝堫潐瀹曞矂鏌℃担瑙勫磳闁轰焦鎹囬弫鎾绘晸閿燂拷 [闂傚倸鍊搁崐宄懊归崶顒佸剭妞ゆ劧绠戦獮銏ゆ煃鏉炴壆鍔嶆い鏂垮缁辨捇宕掑顑藉亾閸濄儳鐭欓柛鏇ㄥ灠缁狀垶鏌ㄩ悤鍌涘 | 闂傚倸鍊搁崐鐑芥嚄閼哥數浠氱紓鍌欒兌缁垶宕濆Δ鍐ㄥ灊闁哄啫鐗婇崐濠氭煢濡警妲搁柣搴弮濮婅櫣绮欓幐搴㈡嫳闂佺硶鏅涢崯鏉戭嚕閹间礁鍐€妞ゆ挾鍠撻崢顏呯節閻㈤潧浠滈柣蹇旂箞瀹曟繂顫濋懜鐢靛幐闂佺ǹ鏈〃鍛閿燂拷]

    • 样条函数基本理论(第3版)(英文版)
      • 作者:(美)L.L.舒梅克
      • 出版社:世界图书出版公司
      • ISBN:9787519253578
      • 出版日期:2019/10/01
      • 页数:582
    • 售价:43.6
  • 内容大纲

        本书是一部全面介绍单变量和张量积样条函数理论的经典著作,为便于读者理解,书中呈现了样条理论在诸多领域的应用,其中包括近似理论,计算机辅助几何设计,曲线和曲面设计与拟合,图像处理,微分方程的数值解,强调了该理论在商业和生物科学中的应用也日益广泛。本书主要面向应用分析、数值分析、计算科学和工程领域的研究生和科学工作者,也可作为样条理论、近似理论和数值分析等应用数学专业课教材或教学参考书。
  • 作者介绍

  • 目录

    Preface
    Preface to the 3rd Edition
    Chapter Ⅰ  Introduction
      1.1  Approximation Problems
      1.2  Polynomials
      1.3  Piecewise Polynomials
      1.4  Spline Functions
      1.5  Function Classes and Computers
      1.6  Historical Notes
    Chapter 2  Preliminaries
      2.1  Function Classes
      2.2  Taylor Expansions and the Green's Function
      2.3  Matrices and Determinants
      2.4  Sign Changes and Zeros
      2.5  Tchebycheff Systems
      2.6  Weak Tchebycheff Systems
      2.7  Divided Differences
      2.8  Moduli of Smoothness
      2.9  The K-Functional
      2.10  n-Widths
      2.11  Periodic Functions
      2.12  Historical Notes
      2.13  Remarks
    Chapter 3  Polynomials
      3.1  Basic Properties
      3.2  Zeros and Determinants
      3.3  Variation-Diminishing Properties
      3.4  Approximation Power of Polynomials
      3.5  Whitney-Type Theorems
      3.6  The Inflexibility of Polynomials
      3.7  Historical Notes
      3.8  Remarks
    Chapter 4  Polynomial Splines
      4.1  Basic Properties
      4.2  Construction of a Local Basis
      4.3  B-Splines
      4.4  Equally Spaced Knots
      4.5  The Perfect B-Spline
      4.6  Dual Bases
      4.7  Zero Properties
      4.8  Matrices and Determinants
      4.9  Variation-Diminishing Properties
      4.10  Sign Properties of the Green's Function
      4.11  Historical Notes
      4.12  Remarks
    Chapter 5  Computational Methods
      5.1  Storage and Evaluation
      5.2  Derivatives
      5.3  The Piecewise Polynomial Representation
      5.4  Integrals

      5.5  Equally Spaced Knots
      5.6  Historical Notes
      5.7  Remarks
    Chapter 6  Approximation Power of Splines
      6.1  Introduction
      6.2  Piecewise Constants
      6.3  Piecewise Linear Functions
      6.4  Direct Theorems
      6.5  Direct Theorems in Intermediate Spaces
      6.6  Lower Bounds
      6.7  n-Widths
      6.8  Inverse Theory for p=∞
      6.9  Inverse Theory for 1≤p<∞
      6.10  Historical Notes
      6.11  Remarks
    Chapter 7  Approximation Power of Splines (Free Knots)
      7.1  Introduction
      7.2  Piecewise Constants
      7.3  Variational Moduli of Smoothness
      7.4  Direct and Inverse Theorems
      7.5  Saturation
      7.6  Saturation Classes
      7.7  Historical Notes
      7.8  Remarks
    Chapter 8  Other Spaces of Polynomial Spllnes
      8.1  Periodic Splines
      8.2  Natural Splines
      8.3  g-Splines
      8.4  Monosplines
      8.5  Discrete Splines
      8.6  Historical Notes
      8.7  Remarks
    Chapter 9  Tchebycheffian Splines
      9.1  Extended Complete Tchebycheff Systems
      9.2  A Green's Function
      9.3  Tchebycheffian Spline Functions
      9.4  Tchebycheffian B-Splines
      9.5  Zeros of Tchebycheffian Splines
      9.6  Determinants and Sign Changes
      9.7  Approximation Power of T-Splines
      9.8  Other Spaces of Tchebycheffian Splines
      9.9  Exponential and Hyperbolic Splines
      9.10  Canonical Complete Tchebycheff Systems
      9.11  Discrete Tchebycheffian Splines
      9.12  Historical Notes
    Chapter 10  L-Splines
      10.1  Linear Differential Operators
      10.2  A Green's Function
      10.3  L-Splines
      10.4  A Basis of Tchebycheffian B-Splines

      10.5  Approximation Power of L-Splines
      10.6  Lower Bounds
      10.7  Inverse Theorems and Saturation
      10.8  Trigonometric Splines
      10.9  Historical Notes
      10.10  Remarks
    Chapter 11  Generalized Splines
      11.1  A General Space of Splines
      11.2  A One-Sided Basis
      11.3  Constructing a Local Basis
      11.4  Sign Changes and Weak Tchebycheff Systems
      11.5  A Nonlinear Space of Generalized Splines
      11.6  Rational Splines
      11.7  Complex and Analytic Splines
      11.8  Historical Notes
    Chapter 12  Tensor-Product Splines
      12.1  Tensor-Product Polynomial Splines
      12.2  Tensor-Product B-Splines
      12.3  Approximation Power of Tensor-Product Splines
      12.4  Inverse Theory for Piecewise Polynomials
      12.5  Inverse Theory for Splines
      12.6  Historical Notes
    Chapter 13  Some Multidimensional Tools
      13.1  Notation
      13.2  Sobolev Spaces
      13.3  Polynomials
      13.4  Taylor Theorems and the Approximation Power of Polynomials
      13.5  Moduli of Smoothness
      13.6  The K-Functional
      13.7  Historical Notes
      13.8  Remarks
    Supplement
    References
    New References
    Index

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>