欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 纯数学教程(纪念版)(英文版)
      • 作者:(英)G.H.哈代
      • 出版社:世界图书出版公司
      • ISBN:9787519253622
      • 出版日期:2019/09/01
      • 页数:509
    • 售价:39.6
  • 内容大纲

        《纯数学教程(纪念版)》是“剑桥数学图书馆”系列丛书之一。这部部世纪经典著作,以简洁易懂的数学语言,全面系统地介绍了基础数学的各个方面,并对许多经典的数学论证给出了严谨的证明。本书共分10章,在介绍了实数、复数的概念后,从第4章和第5章引入了极限的概念,较之一般书的处理方法更为轻松自然、易于接受。另外,书中每章后面配有大量有代表性的杂例,供读者参考练习以巩固所学知识。本书适合高校数学系及对相关专业学生和教师学习和参考。
  • 作者介绍

        哈代(Hardy,Godfrey Harold,1877年2月7日-1947年12月1日),卒于剑桥 。13岁进入以培养数学家著称的温切斯特学院。1896年去剑桥三一学院,并于1900年在剑桥获得一个职位。同年得史密斯奖。以后,在英国牛津大学、剑桥大学任教授。他和J.E.李特尔伍德长期进行合作,写出了近百篇论文,在丢番图逼近,堆垒数论、黎曼ξ函数、三角级数、不等式、级数与积分等领域作出了很大贡献,同时是回归数现象发现者。在20世纪上半叶建立了具有世界水平的英国分析学派。
  • 目录

    CHAPTER Ⅰ  REAL VARIABLES
      1-2.Rational numbers
      3-7.Irrational numbers
      8.Real numbers
      9.Relations of magnitude between real numbers
      10-11.Algebraical operations with real numbers
      12.The number√2
      13-14.Quadratic surds
      15.The continuum
      16.The continuous real variable
      17.Sections of the real numbers. Dedekind's theorem
      18.Points of accumulation
      19.Weierstrass's theorem
      Miscellaneous examples
    CHAPTER Ⅱ  FUNCTIONS OF REAL VARIABLES
      20.The idea of a function
      21.The graphical representation of functions. Coordinates
      22.Polar coordinates
      23.Polynomia s
      24-25.Rational functions
      26-27.Algebraical functions
      28-29.Transcendental functions
      30.Graphical solution of equations
      31.Functions of two variables and their graphical representation
      32.Curves in a plane
      33.Loci in space
      Miscellaneous examples
    CHAPTER Ⅲ  COMPLEX NUMBER
      34-38.Displacements
      39-42.Complex numbers
      43.The quadratic equation with real coefficients
      44.Argand's diagram
      45.De Moivre's theorem
      46.Rational functions of a complex variable
      47-49.Roots of complex numbers
      Miscellaneous examples
    CHAPTER Ⅳ  LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE
      50.Functions of a positive integral variable
      51.Interpolation
      52.Finite and infinite classes
      53-57.Properties possessed by a function of n for large values of n
      58-61.Definition of a limit and other definitions
      62.Oscillating functions
      63-68.General theorems concerning limits
      69-70.Steadily increasing or decreasing functions
      71.Alternative proof of Weierstrass's theorem
      72.The limit of xn
      73.The limit of (1+1/n) n
      74.Some algebraical lemmas
      75.The limit of n □

      76-77.Infinite series
      78.The infinite geometrical series
      79.The representation of functions of a continuous real variable by means of limits
      80.The bounds of a bounded aggregate
      81.The bounds of a bounded function
      82.The limits of indetermination of a bounded function
      83-84.The general principle of convergence
      85-86.Limits of complex functions and series of complex terms
      87-88.Applications to zn and the geometrical series
      89.The symbols 0, o, ~
      Miscellaneous examples
    CHAPTER Ⅴ  LIMITSOFFUNCTIONSOFACONTINUOUSVARIABLE.CONTINUOUS AND DISCONTINUOUS FUNCTIONS
      90-92.Limits as x→ ∞ or x → ∞
      93-97.Limits as x → a
      98.The symbols O, o, ~: orders of smallness and greatness
      99-100.Continuous functions of a real variable
      101-105.Properties of continuous functions. Bounded functions The oscillation of a function in an interval
      106-107.Sets of intervals on a line. The Heine-Borel theorem
      108.Continuous functions of several variables
      109-110.Implicit and inverse functions
      Miscellaneous examples
    CHAPTER Ⅵ  DERIVATIVES AND INTEGRALS
      111-113.Derivatives
      114.General rules for diferentiation
      115.Derivatives of complex functions
      116.The notation of the differential calculus
      117.Differentiation of polynomials
      118.Differentiation of rational functions
      119.Differentiation of algebraical functions
      120.Differentiation of transcendental functions
      121.Repeated differentiation
      122.General theorems concerning derivatives Rolle's theorem
      123-125.Maxima and minima
      126-127.The mean value theorem
      128.Cauchy's mean value theorem
      129.A theorem of Darboux
      130-131.Integration. The logarithmic function
      132.Integration of polynomials
      133-134.Integration of rational functions
      135-142.Integration of algebraical functions. Integration by rationalisation. Integration by parts
      143-147. Integration of transcendental functions
      148.Areas of plane curves
      149.Lengths of plane curves
      Miscellaneous examples
    CHAPTER Ⅶ  ADDTTTONAL THEOREMS IN THE DIFFERENTIAL AND INTEGRAL CALCULUS
      150-151.Taylor's theorem
      152.Taylor's series
      153.Applications of Taylor's theorem to maxima and minima
      154.The calculation of certain limits
      155.The contact of plane curves

      156-158. Differentiation of functions of several variables
      159.The mean value theorem for functions of two variables
      160.Differentials
      161-162.Definite integrals
      163.The circular functions
      164.Calculation of the definite integral as the limit of a sum
      165.General properties of the definite integral
      166.Integration by parts and by substitution
      167.Alternative proof of Taylor's theorem
      168.Application to the binomial series
      169.Approximate formulae for definite integrals. Simpson's rule
      170.Integrals of complex functions
      Miscellaneous examples
    CHAPTER Ⅷ  THE CONVERGENCE OF INFINITE SERIES AND INFINITE INTEGRALS
      171-174.Series of positive terms.Cauchy's and d'Alembert's tests of convergence
      175.Ratio tests
      176.Dirichlet's theorem
      177.Multiplication of series of positive terms
      178-180.Further tests for convergence. Abel's theorem. Maclaurln's integral test
      181.The series ∑n-3
      182.Cauchy's condensation test
      183.Further ratio tests
      184-189.Infinite integrals
      190.Series of positive and negative terms
      191-192.Absolutely convergent series
      193-194.Conditionally convergent series
      195.Alternating series
      196.Abel's and Dirichlet's tests of convergence
      197.Series of complex terms
      198-201.Power series
      202.Multiplication of series
      203.Absolutely and conditionally convergent infinite integrals
      Miscellaneous examples
    CHAPTER Ⅸ  THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS OF A REAL VARIABLE
      204-205.The logarithmic function
      206.The functional equation satisfied by log x
      207-209.The behaviour of log x as x tends to infinity or to zero
      210.The logarithmic scale of infinity
      211.The number e
      212-213.The exponential function
      214.The general power ax
      215.The exponential limit
      216.The logarithmic limit
      217.Common logarithms
      218.Logarithmic tests of convergence
      219.The exponential series
      220.The logarithmic series
      221.The series for arc tan x
      222.The binomial series
      223.Alternative development of the theory

      224-226.The analytical theory of the circular functions
      Miscellaneous examples
    CHAPTER Ⅹ  THE GENERAL THEORY OF THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS
      227-228.Functions of a complex variable
      229.Curvilincar integrals
      230.Definition of the logarithmic function
      231.The values of the logarithmic function
      232-234.The exponential function
      235-236.The general power aζ
      237-240.The trigonometrical and hyperbolic functions
      241.The connection between the logarithmic and inverse trigonometrical functions
      242.The exponential series
      243.The series for cos z and sin z
      244-245.The logarithmic series
      246.The exponential limit
      247.The binomial series
      Miscellaneous examples
    APPENDIX Ⅰ  The proof that every equation has a root
    APPENDIX Ⅱ  A note on double limit problems
    APPENDIX Ⅲ  The infinite in analysis and geometry
    APPENDIX Ⅳ  The infinite in analysis and geometry
    INDEX

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>