欢迎光临澳大利亚新华书店网 [登录 | 免费注册]

    • 代数拓扑简明教程(第2卷)(英文版)
      • 作者:(美)乔·彼得·梅//凯思琳·庞托
      • 出版社:世界图书出版公司
      • ISBN:9787519266424
      • 出版日期:2019/09/01
      • 页数:514
    • 售价:31.6
  • 内容大纲

        《代数拓扑简明教程(第1卷)》里包含了代数拓扑学的入门知识,如基本群、覆叠空间、同伦、同调和上同调等,这本《代数拓扑简明教程(第2卷)》里则介绍了更多标准代数拓扑教科书通常没有提及的重要内容,如拓扑空间的局部化与完备化、模型范畴、Hopf代数等。
  • 作者介绍

  • 目录

    Introduction
    Some conventions and notations
    Acknowledgments
    PART 1  Preliminaries: Basic Homotopy Theory and Nilpotent Spaces
      1.Cofibrations and fibrations
        1.1  Relations between cofibrations and fibrations
        1.2  The fill-in and Verdier lemmas
        1.3  Based and free cofbrations and fibrations
        1.4  Actions of fundamental groups on homotopy classes of maps
        1.5  Actions of fundamental groups in fibration sequences
      2.Homotopy colimits and homotopy limits; lim1
        2.1  Some basic homotopy colimits
        2.2  Some basic homotopy limits
        2.3  Algebraic properties of lim1
        2.4  Anexample of nonvanishing liml terms
        2.5  The homology of colimits and limits
        2.6  Aprofinite universal coefficient theorem
      3.Nilpotent spaces and Postnikov towers
        3.1  A-nilpotent groups and spaces
        3.2  Nilpotent spaces and Postnikov towers
        3.3  Cocellular spaces and the dual Whitehead theorem
        3.4  Fibrations with fiber an Eilenberg-Mac Lane space
        3.5  Postnikov A-towers
      4.Detecting nilpotent groups and spaces
        4.1  Nilpotent actions and cohomology
        4.2  Universal covers of nilpotent spaces
        4.3  A-maps of A-nilpotent groups and spaces
        4.4  Nilpotency and fibrations
        4.5  Nilpotent spaces and finite type conditions
    PART 2  Localizations of Spaces at Sets of Primes
      5.Localizations of nilpotent groups and spaces
        5.1  Localizations of abelian groups
        5.2  The definition of localizations of spaces
        5.3  Localizations of nilpotent spaces
        5.4  Localizations of nilpotent groups
        5.5  Algebraic properties of localizations of nilpotent groups
        5.6  Finitely generated T-local groups
      6.Characterizations and properties of localizations
        6.1  Characterizations of localizations of nilpotent spaces
        6.2  Localizations of limits and fiber sequences
        6.3  Localizations of function spaces
        6.4  Localizations of colimits and cofiber sequences
        6.5  Acellular construction of localizations
        6.6  Localizations of H-spaces and co-H-spaces
        6.7  Rationalization and the finiteness of homotopy groups
        6.8  The vanishing of rational phantom maps
      7.Fracture theorems for localization: groups
        7.1  Global to local pullback diagrams
        7.2  Global to local: abelian and nilpotent groups
        7.3  Local to global pullback diagrams

        7.4  Local to global: abelian and nilpotent groups
        7.5  The genus of abelian and nilpotent groups
        7.6  Exact sequences of groups and pulbacks
      8.Fracture theorems for localization: spaces
        8.1  Statements of the main fracture theorems
        8.2  Fracture theorems for maps into nilpotent spaces
        8.3  Global to local fracture theorems: spaces
        8.4  Local to global fracture theorems: spaces
        8.5  The genus of nilpotent spaces
        8.6  Alternative proofs of the fracture theorems
      9.Rational H-spaces and fracture theorems
        9.1  The structure of rational H-spaces
        9.2  The Samelson product and H* (X; Q)
        9.3  The Whitehead product
        9.4  Fracture theorems for H-spaces
    PART 3  Completions of Spaces at Sets of Primes
      10.Completions of nilpotent groups and spaces
        10.1  Completions of abelian groups
        10.2  The definition of completions of spaces at T
        10.3  Completions of nilpotent spaces
        10.4  Completions of nilpotent groups
      11.Characterizations and properties of completions
        11.1  Characterizations of completions of nilpotent spaces
        11.2  Completions of limits and fiber sequences
        11.3  Completions of function spaces
        11.4  Completions of colimits and cofiber sequences
        11.5  Completions of H-spaces
        11.6  The vanishing of p-adic phantom maps
      12.Fracture theorems for completion: groups
        12.1  Preliminaries on pullbacks and isomorphisms
        12.2  Global to local: abelian and nilpotent groups
        12.3  Local to global: abelian and nilpotent groups
        12.4  Formal completions and the adelic genus
      13.Fracture theorems for completion: spaces
        13.1  Statements of the main fracture theorems
        13.2  Global to local fracture theorems: spaces
        13.3  Local to global fracture theorems: spaces
        13.4  The tensor product of a space and a ring
        13.5  Sullivan's formal completion
        13.6  Formal completions and the adelic genus
    PART 4  An Introduction to Model Category Theory
      14.An introduction to model category theory
        14.1  Preliminary definitions and weak factorization systems
        14.2  The definition and first properties of model categories
        14.3  The notion of homotopy in a model category
        14.4  The homotopy category of a model category
      15.Cofbrantly generated and proper model categories
        15.1  The small object argument for the construction of WFSs
        15.2  Compactly and cofbrantly generated model categories
        15.3  Over and under model structures

        15.4  Left and right proper model categories
        15.5  Left propernes, lifting properties, and the sets [X, Y]
      16.Categorical perspectives on model categories
        16.1  Derived functors and derived natural transformations
        16.2  Quillen adjunctions and Quillen equivalences
        16.3  Symmetric monoidal categories and enriched categories
        16.4  Symmetricmonoidal and entiched model catesoies
        16.5  A glimpse at higher categoricalstructures
      17.Model structures on the category of spaces
        17.1  The Hurewicz or h-model structure on spaces
        17.2  The Quillen or gmodel structure on spaces
        17.3  Mixed model structures in general
        17.4  The mixed model structure on spaces
        17.5  The model structure on simplicial sets
        17.6  The proof of the model axioms
      18.Model structures on categories of chain complexes
        18.1  The algebraic framework and the analogy with topology
        18.2  h-cofibrations and h-fbrations in ChR
        18.3  The h-model structure on ChR
        18.4  The -model structure on ChR
        18.5  Profs and the characterization of qcofibrations
        18.6  The m-model structure on ChR
      19.Resolution and localization model structures
        19.1  Resolution and mixed model structures
        19.2  The general context of Bousfield localization
        19.3  Localizations with respect to homology theories
        19.4  Bousfield localization at sets and classes of maps
        19.5  Bousfield localization in enriched model categories
    PART 5  Bialgebras and Hopf Algebras
      20.Bialgebras and Hopf algebras
        20.1  Preliminaries
        20.2  Algebras, coalgebras, and bialgebras
        20.3  Antipodes and Hopf algebras
        20.4  Modules, comodules, and related concepts
      21.Connected and component Hopf algebras
        21.1  Connected algebras,coalgebras,and Hopf algebras
        21.2  Splitting theorems
        21.3  Component coalgebras and the existence of antipodes
        21.4  Self-dual Hopf algebras
        21.5  The homotopy groups of MO and other Thom spectra
        21.6  A proof of the Bott periodicity theorem
      22.Lie algebras and Hopf algebras in characteristic zero
        22.1  Graded Lie algebras
        22.2  The Poincare-Birkhoff-Witt theorem
        22.3  Primitively generated Hopf algebras in characteristic zero
        22.4  Commutative Hopf algebras in characteristic zero
      23.Restricted Lie algebras and Hopf algebras in characteristic p
        23.1  Restricted Lie algebras
        23.2  The restricted Poincare-Birkhoff-Witt theorem
        23.3  Primitively generated Hopf algebras in characteristic p

        23.4  Commutative Hopf algebras in characteristic p
      24.A primer on spectral sequences
        24.1  Definitions
        24.2  Exact couples
        24.3  Filtered complexes
        24.4  Products
        24.5  The Serre spectral sequence
        24.6  Comparison theorems
        24.7  Convergence proofs
    Bibliography
    Index

同类热销排行榜

推荐书目

  • 孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...

  • 时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...

  • 本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...

更多>>>