-
内容大纲
本书是一部经典教科书,初版于1934年,第2版于1952年出版,1952年以后又11次做了重印,是半个多世纪以来不等式领域中一部最具影响力的图书。目次:导论;基本平均值;任意函数和凸函数论的平均值;微积分的各种应用;无穷极数;积分;变量微积分的应用;双线性型和多线性型的若干定理;希尔伯特不等式及其模拟和扩张;重排。 -
作者介绍
-
目录
CHAPTER Ⅰ.INTRODUCTION
1.1. Finite, infinite, and integral inequalities
1.2. Notations
1.3. Positive inequalities
1.4. Homogeneous inequalities
1.5. The axiomatic basis of algebraic inequalities
1.6. Comparable functions
1.7. Selection of proofs
1.8. Selection of subjects
CHAPTER Ⅱ.ELEMENTARY MEAN VALUES
2.1. Ordinary means
2.2. Weighted means
2.3. Limiting cases of Μr(a)
2.4. Cauchy's inequality
2.5. The theorem of the arithmetic and geometric means
2.6. Other proofs of the theorem of the means
2.7. Holder's inequality and its extensions
2.8. Holder's inequality and its extensiong (cont.)
2.9. General properties of the means Μr(a)
2.10. The sums □(无此符号), (a)
2.11. Minkowski's inequality
2.12. A companion to Minkowski's inequality
2.13. Illustrations and applications of the fundamental inequalities
2.14. Inductive proofs of the fundamental inequalities
2.15. Elementary inequalities connected withTheorem 37
2.16. Elementary proof of Theorem 3
2.17. Tchebychef's inequality
2.18. Muirhead's theorem
2.19. Proof of Muirhead's theorem
2.20. An alternative theorem
2.21. Further theorems on aymmetrical means
2.22. The elementary symmetric funotions of n positive numbers
2.23. A note on definite forms
2.24. A theorem concerning strictly positive forms Miscellaneous theorems and examples
CHAPTER Ⅲ.MEAN VALUES WITH AN ARBITRARY FUNCTION AND THE THEORY OF CONVEX FUNCTIONS
3.1. Definitions
3.2. Equivalent meang
8.3. A characteristic property of the means Μr
3.4. Comparability
3.5. Convex functions
3.6. Continuous convex functions
3.7. An alternative definition
3.8. Equality in the fundamental inequalities
3.9. Restatements and extensions of Theorem 85
3.10. Twice differentiable convex functions
3.11. Applications of the properties of twice differentiable convex functions
3.12. Convex functions of several variables
3.13. Generalisations of Hlder's inequality
3.14. Some theorems concerning monotonic functions
3.15. Sums with an arbitrary function: generalisations of Jensen's inequality
3.16. Generalisations of Minkowski's inequality
3.17. Comparison of sets
3.18. Further general properties of convex functions
3.19. Further properties of continuous convex functions
3.20. Discontinuous convex functions
Miscellaneous theorems and examples
CHAPTER Ⅳ.VARIOUS APPLICATIONS OF THE CALCULUS
4.1. Introduotion
4.2. Applications of the mean value theorem
4.3. Further applications of elementary differential caloulus
4.4. Maxima and minima of functions of one variable
4.5. Use of Taylor's series
4.6. Applications of the theory of maxima and minima of functions of several variables
4.7. Comparison of series and integrals
4.8. An inequality of W.H.Young
CHAPTER Ⅴ.INFINITE SERIES
5.1. Introduction
5.2. The means Μr
5.3. The generalisation of Theorems 3 and 9
5.4. Holder's inequality and its extensions
5.5. The means Μr(cont.)
5.6. The sums □(无此符号)
5.7. Minkowski's inequality
5.8. Tchebychef's inequality
5.9. A summary
Miscellaneous theorems and examples
CHAPTER Ⅵ.INTEGRALS
6.1. Preliminary remarks on Lebesgue integrals
6.2. Remarks on null sets and null functions
6.3. Further remarks concerning integration
6.4. Remarks on methods of proof
6.5. Further remarks on method: the inequality of Schwarz
6.6. Definition of the means Μr(f)when r≠0
6.7. The geometric mean of a function
8.8. Further properties of the geometric mean
6.9. Holder's inequality for integrals
6.10. General properties of the means Μr(f)
6.11. General properties of the means Μr(f) (cont.)
6.12. Convexity of log Μrr
6.13. Minkowski's inequality for integrals
6.14. Mean values depending on an arbitrary function
6.15. The definition of the Stieltjes integral
6.16. Special cases of the Stieltjes integral
6.17. Extensions of earlier theorems
6.18. The means Μr(f;?)
6.19. Distribution functions
6.20. Characterisation of mean values
6.21. Remarks on the characteristic properties
6.22. Completion of the proof of Theorem 215
Miscellaneous theorems and examples
GBAPTER Ⅶ.SOME APPLICATIONS OF THE CALCULUS OF VARIATIONS
7.1. Some general remarks
7.2. Object of the present chapter
7.3. Example of an inequality corresponding to an unattained extremum
7.4. First proof of Theorem 254
7.5. Second proof of Theorem 254
7.6. Further examples illustrative of variational methods
7.7. Further examples: Wirtinger's inequality
7.8. An example involving second derivative
7.9. A simpler problem
Miscellaneous theorems and examples
CHAPTER Ⅷ.SOME THEOREMS CONCERNING BILINEAR AND MULTILINEAR FORMS
8.1. Introduction
8.2. An inequality for multilinear forms with positive variables and coefficients
8.3. A theorem of W.H.Young
8.4. Generalisations and analogues
8.5. Anplications to Fourier series
8.6. The convexity theorem for positive multilinear forms
8.7. General bilinear forms
8.8. Definition of a bounded bilinear form
8.9. Some properties of bounded formg in [p, q]
8.10. The Faltung of two forms in [p, p']
8.11. Some special theorems on forms in [2, 2]
8.12. Application to Hilbert's formg
8.13. The convexity theorem for bilinear formg with complex variables and coefficients
8.14. Further properties of a maximal set (x, y)
8.15. Proof of Theorem 295
8.16. Applioations of the theorem of M.Riesz
8.17. Applications to Fourier series
Miscellaneous theorems and examples
CHAPTER Ⅸ.HILBERT'S INEQUALITY AND ITS ANALOGUES AND EXTENSIONS
9.1. Hilbert's double series theorem
9.2. A general olass of bilinear forms
9.3. The corresponding theorem for integrals
9.4. Extensions of Theorems 318 and 319
9.5. Best possible constants: proof of Theorem
9.6. Further remarks on Hilbert's theorems
9.7. Applications of Hilbert's theorems
9.8. Hardy's inequality
9.9. Further integral inequalities
9.10. Further theorems concerning series
9.11. Deduction of theorems on series from theorems on integrals
9.12. Carleman's inequality
9.13. Theorems with 09.14. A theorem with two parameters p and q
Miscellaneous theorems and examples
CHAPTER Ⅹ.REARRANGEMENTS
10.1. Rearrangements of finite sets of variables
10.2. A theorem concerning the rearrangements of two sets
10.3. A second proof of Theorem 368
10.4. Restatement of Theorem 368
10.5. Theorems concerning the rearrangements of three sets
10.6. Reduction of Theorem 373 to a special case
10.7. Completion of the proof
10.8. Another proof of Theorem 371
10.9. Rearangements of any number of sets
10.10. A further theorem on the rearrangement of any number of sets
10.11. Applications
10.12. The rearangement of a function
10.13. On the rearrangement of two functions
10.14. On the rearrangement of three funetions
10.15. Completion of the proof of Theorem 379
10.16. An alternative proof
10.17. Applications
10.18. Another theorem concerning the rearrangement of a function in decreasing order
10.19. Proof of Theorem 384
Miscellaneous theorems and examples
APPENDIX Ⅰ.On strictly positive forms
APPENDIX IⅡ.Thorin's proof and extension of Theorem 295
APPENDIX Ⅲ.On Hilbert's inequality
BIBLIOGRAPHY
同类热销排行榜
- 目送/人生三书
- 21世纪的《背影》 + 感人至深的“生死笔记”+ 龙应台亲手摄影 + 跨三代共读的人生之书! 华人世界率性犀利的一枝笔,龙应台独家...
- 顾城的诗(金版)(精)/蓝星诗库
- 人类群星闪耀时(插图本)/译林名著精选
- 牛津高阶英汉双解词典(附光盘第8版)(精)
- 文化苦旅(新版)
- 摆渡人
- 解忧杂货店(精)
- 骆驼祥子
- 曾国藩(又笨又慢平天下)
- 查令十字街84号(珍藏版)(精)
推荐书目
-
孩子你慢慢来/人生三书 华人世界率性犀利的一枝笔,龙应台独家授权《孩子你慢慢来》20周年经典新版。她的《...
-
时间简史(插图版) 相对论、黑洞、弯曲空间……这些词给我们的感觉是艰深、晦涩、难以理解而且与我们的...
-
本质(精) 改革开放40年,恰如一部四部曲的年代大戏。技术突变、产品迭代、产业升级、资本对接...